
Computer Science Lecture 10, page CS677: Distributed OS

Last Class: RPCs and RMI

• Case Study: Sun RPC

• Lightweight RPCs

• Remote Method Invocation (RMI)
– Design issues

!1

Computer Science Lecture 10, page CS677: Distributed OS

Today: Communication Issues

• Message-oriented communication
– Persistence and synchronicity

• Stream-oriented communication

!2

Computer Science Lecture 10, page CS677: Distributed OS

Module 1:
Persistence and Synchronicity in Communication

• General organization of a communication system in which hosts are connected
through a network

2-20

!3

Computer Science Lecture 10, page CS677: Distributed OS

Persistence

• Persistent communication
– Messages are stored until (next) receiver is ready
– Examples: email, pony express

!4

Computer Science Lecture 10, page CS677: Distributed OS

Transient Communication

• Transient communication
– Message is stored only so long as sending/receiving

application are executing
– Discard message if it can’t be delivered to next server/receiver
– Example: transport-level communication services offer

transient communication
– Example: Typical network router – discard message if it can’t

be delivered next router or destination

!5

Computer Science Lecture 10, page CS677: Distributed OS

Synchronicity

• Asynchronous communication
– Sender continues immediately after it has submitted the message
– Need a local buffer at the sending host

• Synchronous communication
– Sender blocks until message is stored in a local buffer at the

receiving host or actually delivered to sending
– Variant: block until receiver processes the message

• Six combinations of persistence and synchronicity

!6

Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

a) Persistent asynchronous communication (e.g., email)
b) Persistent synchronous communication

2-22.1

!7

Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication

2-22.2

!8

Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f) Response-based transient synchronous communication (RPC)

!9

Computer Science Lecture 10, page CS677: Distributed OS

Message-oriented Transient Communication

• Many distributed systems built on top of simple message-oriented model
– Example: Berkeley sockets

!10

Computer Science Lecture 10, page CS677: Distributed OS

Berkeley Socket Primitives

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

!11

Computer Science Lecture 10, page CS677: Distributed OS

Message-Passing Interface (MPI)

• Sockets designed for network communication (e.g., TCP/IP)
– Support simple send/receive primitives

• Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems
– Need an interface with more advanced primitives

• Large number of incompatible proprietary libraries and protocols
– Need for a standard interface

• Message-passing interface (MPI)
– Hardware independent
– Designed for parallel applications (uses transient communication)

• Key idea: communication between groups of processes
– Each endpoint is a (groupID, processID) pair

!12

Computer Science Lecture 10, page CS677: Distributed OS

MPI Primitives
Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

!13

CS677: Distributed OSComputer Science Lecture 10, page

Computing Parable

• The Lion and the Rabbit - Part II

• Courtesy: S. Keshav

!14

Computer Science Lecture 10, page CS677: Distributed OS

Module 2 :
Message-oriented Persistent Communication

• Message queuing systems
– Support asynchronous persistent communication
– Intermediate storage for message while sender/receiver are

inactive
– Example application: email

• Communicate by inserting messages in queues
• Sender is only guaranteed that message will be

eventually inserted in recipient’s queue
– No guarantees on when or if the message will be read
– “Loosely coupled communication”

!15

Computer Science Lecture 10, page

Message-Queuing Model (1)

!16

Computer Science Lecture 10, page CS677: Distributed OS

Message-Queuing Model

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

!17

Computer Science Lecture 10, page

General Architecture of a Message-Queuing
System (2)

• Queue manager and relays
– Relays use an overlay network
– Relays know about the network topology and how to route

!18

Computer Science Lecture 10, page

Message Brokers

• Message broker: application level gateway in MQS
– Convert incoming messages so that they can be understood by

destination (format conversion)
– Also used for pub-sub systems

!19

Computer Science Lecture 10, page

IBM’s WebSphere MQ

• Queue managers manage queues
– Connected through message channels

• Message channel agent (MCA)
– Checks queue, wraps into TCP packet, send to receiving MCA

!20

Computer Science Lecture 10, page CS677: Distributed OS

Module 3:
Stream Oriented Communication

• Message-oriented communication: request-response
– When communication occurs and speed do not affect correctness

• Timing is crucial in certain forms of communication
– Examples: audio and video (“continuous media”)
– 30 frames/s video => receive and display a frame every 33ms

• Characteristics
– Isochronous communication

• Data transfers have a maximum bound on end-end delay and
jitter

– Push mode: no explicit requests for individual data units beyond
the first “play” request

!21

Computer Science Lecture 10, page CS677: Distributed OS

Examples

Single sender and receiver

One sender
Multiple receivers

!22

Computer Science Lecture 10, page

Streams and Quality of Service
• Properties for Quality of Service:
• The required bit rate at which data should be

transported.
• The maximum delay until a session has been set up
• The maximum end-to-end delay .
• The maximum delay variance, or jitter.
• The maximum round-trip delay.

!23

Computer Science Lecture 10, page CS677: Distributed OS

Quality of Service (QoS)
• Time-dependent and other requirements are specified as quality of service (QoS)

– Requirements/desired guarantees from the underlying systems
– Application specifies workload and requests a certain service quality
– Contract between the application and the system

Characteristics of the Input Service Required

•maximum data unit size (bytes)
•Token bucket rate (bytes/sec)
•Toke bucket size (bytes)
•Maximum transmission rate (bytes/
sec)

•Loss sensitivity (bytes)
•Loss interval (µsec)
•Burst loss sensitivity (data units)
•Minimum delay noticed (µsec)
•Maximum delay variation (µsec)
•Quality of guarantee

!24

Computer Science Lecture 10, page CS677: Distributed OS

Specifying QoS: Token bucket

• The principle of a token bucket algorithm
– Parameters (rate r, burst b)
– Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

!25

Computer Science Lecture 10, page CS677: Distributed OS

Enforcing QoS

• Enforce at end-points (e.g., token bucket)
– No network support needed

• Mark packets and use router support
– Differentiated services: expedited & assured forwarding

• Use buffers at receiver to mask jitter
• Packet losses

– Handle using forward error correction
– Use interleaving to reduce impact

!26

Computer Science Lecture 10, page

Enforcing QoS (1)

!27

Computer Science Lecture 10, page

Enforcing QoS (2)

• Can also use forward error correction (FEC)

!28

Computer Science Lecture 10, page

HTTP Streaming
• UDP is inherently better suited for streaming

– Adaptive streaming, specialized streaming protocols
• Yet, almost all streaming occurs over HTTP (and TCP)

– Universal availability of HTTP, no special protocol needed
• Direct Adaptive Streaming over HTTP (DASH)

– Intelligence is placed at the client

!29

Time

128 kbps
256 kbps

512 kbps

Client

http http http http

Computer Science Lecture 10, page CS677: Distributed OS

Stream synchronization

• Multiple streams:
– Audio and video; layered video

• Need to sync prior to playback
– Timestamp each stream and sync up data units prior to

playback
• Sender or receiver?
• App does low-level sync

– 30 fps: image every 33ms, lip-sync with audio
• Use middleware and specify playback rates

!30

Computer Science Lecture 10, page

Synchronization Mechanism

!31

Computer Science Lecture 10, page CS677: Distributed OS

Multicasting

• Group communication
– IP multicast versus application-level multicast
– Construct an overlay multicast tree rooted at the sender
– Send packet down each link in the tree

• Issues: tree construction, dynamic joins and leaves

!32

Computer Science Lecture 10, page

Overlay Construction

!33

