Last Class: RPCs and RMI

« Case Study: Sun RPC
* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

2 ¥ § computer Science CS677: Distributed OS Lecture 10, page |

Today: Communication Issues

* Message-oriented communication
— Persistence and synchronicity

e Stream-oriented communication

Computer Science CS677: Distributed OS Lecture 10, page 2

Module 1:
Persistence and Synchronicity in Communication

Messaging interface

Sending host Communication server Communication server Receiving host

Buffer independent

communication

server \

0s 0S I 0S

L Routing of communicating Routing o
Application program hosts program Application
A A '
7 / To other (remote) —_

]

[-
—
1

||| €

X
T \os

Local buffer Local network w__/ Local buffer

Incoming message

| Computer Science CS677: Distributed OS Lecture 10, page 3

Persistence

* Persistent communication
— Messages are stored until (next) receiver is ready
— Examples: email, pony express

Post |~
Pony and rider ofcf)i?:e o
P v A
Post # Post |~
office | ___*__T____ » | office

oA | Post :/___>
Mail stored and sorted, to office | ~._
be sent out depending on destination A

and when pony and rider available

,"1

Computer Science CS677: Distributed OS Lecture 10, page 4

Transient Communication

 Transient communication

— Message is stored only so long as sending/receiving
application are executing

— Discard message if it can’t be delivered to next server/receiver

— Example: transport-level communication services offer
transient communication

— Example: Typical network router — discard message if it can’t
be delivered next router or destination

5§ Computer Science CS677: Distributed OS Lecture 10, page 5

Synchronicity

* Asynchronous communication
— Sender continues immediately after it has submitted the message
— Need a local buffer at the sending host

« Synchronous communication

— Sender blocks until message is stored in a local buffer at the
receiving host or actually delivered to sending

— Variant: block until receiver processes the message

 Six combinations of persistence and synchronicity

: Computer Science CS677: Distributed OS Lecture 10, page 6

Persistence and Synchronicity Combinations

A sends message

and continues A stopped

A
B
B starts and
B is not receives
running message

A sends message A stopped
and waits until accepted running
A
Message is stored
at B's location for
later delivery Time
- —p
B \\ﬁ__{___/,u_
Bis not B starts and
running receives
message

(b)

a) Persistent asynchronous communication (e.g., email)

b) Persistent synchronous communication

) Computer Science

CS677: Distributed OS

Lecture 10, page 7

Persistence and Synchronicity Combinations

A sends message
and continues

A Message can be
sentonly if Bis
running

Time

B ----- —)

B receives
message

)

Send request and wait
until received

A
Request ACK
is received .
Time
B T — S
ff——f\—ﬁ/—‘—/
Running, but doing Process
something else request
(d)

c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication

,".

Computer Science

CS677: Distributed OS

Lecture 10, page 8§

Persistence and Synchronicity Combinations

Send request and wait until Send request
accepted } and wait for reply
A — - (— A — -
Request Request Accepted
is received Accepted - is received -
ime ime
i , — -
B — S ———— B\E_h_/g___./w\%__\r,_,»«) ““““““
Running, but doing Process Runnm_g, but doing Process
something else request something else request
() (®

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f) Response-based transient synchronous communication (RPC)

' § Computer Science CS677: Distributed OS Lecture 10, page 9

Message-oriented Transient Communication

* Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server A T
[socket - bind -3 listen | acciept}—} r:ad | write

|
| ! \
. . . |] . . 1
Synchronization point —» ! Communication
! \

Y ,f A
socket »rconnect write ——» read close |
Client

2 3 Computer Science CS677: Distributed OS Lecture 10, page10

Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
'«,) Computer Science CS677: Distributed OS Lecture 10, page1]

Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

» Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems
— Need an interface with more advanced primitives
* Large number of incompatible proprietary libraries and protocols
— Need for a standard interface
» Message-passing interface (MPI)
— Hardware independent
— Designed for parallel applications (uses transient communication)
« Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair

Compu'l'er‘ Science CS677: Distributed OS Lecture 10, page]2

MPI Primitives

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

omputer Science CS677: Distributed OS Lecture 10, page 13

Computing Parable

* The Lion and the Rabbit - Part I1

* Courtesy: S. Keshav

5 Computer Science CS677: Distributed OS Lecture 10, page 14

Module 2 :
Message-oriented Persistent Communication

* Message queuing systems
— Support asynchronous persistent communication

— Intermediate storage for message while sender/receiver are
inactive

— Example application: email
« Communicate by inserting messages in queues

» Sender 1s only guaranteed that message will be
eventually inserted in recipient’s queue
— No guarantees on when or if the message will be read
— “Loosely coupled communication”

Jl Computer Science CS677: Distributed OS Lecture 10, page15

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

<[<«
T <

<[
I

————————————————

Receiver Receiver Receiver Receiver
running passive running passive

(a) (b) () (d)

5 Computer Science Lecture 10, page16

Message-Queuing Model

Look-up
Sender | |~ transport-level Receiver
/ address of queue
Queuing \;j’@ Queue-level 1+ =| Queuing
layer y < address 1 layer
Local OS ’ Address look-up Local OS T\

database
k J Transport-level

Network address
Primitive Meaning
Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.
é Compufgr‘ Science CS677: Distributed OS Lecture 10, page17

General Architecture of a Message-Queuing
System (2)

Sender A
Application
Application
CReceive
ueue
] Re)
Message [T
|||}—\\ gﬁ o
Send queue \4 / .
I M <>
. Application
[N
R \ i Uf
Sl [< > T
y 0 | o Receiver B
Application [
Router

* Queue manager and relays
— Relays use an overlay network
— Relays know about the network topology and how to route

I E omputer Science Lecture 10, page18

Message Brokers

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ / /
\ \ [[

/??g‘%f:;\o@
EAIMREEEE D\'UQU?;S;% E

0s 0s 0s

Network

« Message broker: application level gateway in MQS

— Convert incoming messages so that they can be understood by
destination (format conversion)

— Also used for pub-sub systems

) Computer Science Lecture 10, page|9

IBM’s WebSphere MQ

Client's receive

Sending client Routing table Send queue queve \ Recei/ving client
- 7
Queue Queue
RECQIE manager manager Program

MQ Interface m » M/
[1

Stub stub
| AWAN
A\

— ——

RPC Local network ;
Enterprise network
(synchronous) To other remote
Message passing queue managers
(asynchronous)

° Queue managers manage queucs

— Connected through message channels

* Message channel agent (MCA)
— Checks queue, wraps into TCP packet, send to receiving MCA

) Computer Science Lecture 10, page20

Module 3:
Stream Oriented Communication

* Message-oriented communication: request-response
— When communication occurs and speed do not affect correctness

* Timing is crucial in certain forms of communication
— Examples: audio and video (“‘continuous media™)
— 30 frames/s video => receive and display a frame every 33ms

* Characteristics
— Isochronous communication
* Data transfers have a maximum bound on end-end delay and
Jitter
— Push mode: no explicit requests for individual data units beyond
the first “play” request

Computer Science CS677: Distributed OS Lecture 10, page2|

Examples

Camera
== Display
_\L os jtream oS Jrl__j
Notork Single sender and receiver
(b)
Stream 3 Sink
A
— Intermediate
nhode, possibl
Source) with itore One sender
[> Multiple receivers

Lower bandwid%\[

Computer Science CS677: Distributed OS Lecture 10, page22

Streams and Quality of Service

* Properties for Quality of Service:

* The required bit rate at which data should be
transported.

* The maximum delay until a session has been set up
* The maximum end-to-end delay .

» The maximum delay variance, or jitter.

* The maximum round-trip delay.

Computer Science Lecture 10, page23

Quality of Service (QoS)

* Time-dependent and other requirements are specified as quality of service (QoS)
— Requirements/desired guarantees from the underlying systems
— Application specifies workload and requests a certain service quality
— Contract between the application and the system

Characteristics of the Input Service Required

emaximum data unit size (bytes) eLoss sensitivity (bytes)

eToken bucket rate (bytes/sec) eLoss interval (usec)

*Toke bucket size (bytes) *Burst loss sensitivity (data units)

eMaximum transmission rate (bytes/ «Minimum delay noticed (usec)

sec) «Maximum delay variation (usec)
*Quality of guarantee

Computer Science CS677: Distributed OS Lecture 10, page24

Specifying QoS: Token bucket

Application [—
-l:-% j%

Irregular stream One token is added
of data units to the bucket every AT
- e e

Regular stream

» The principle of a token bucket algorithm
— Parameters (rate r, burst b)
— Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

5 Computer Science CS677: Distributed OS Lecture 10, page25

Enforcing QoS

Stream synchronization

Multimedia server Client
‘ Stream ‘4 | Stream
@7 decoder " decoder
QoS QoS
Compressed control control
multimedia data A

Network
Entorce at ena-points (€.g., ToOken bucker)
— No network support needed

Mark packets and use router support
— Differentiated services: expedited & assured forwarding

Use buffers at receiver to mask jitter

Packet losses
— Handle using forward error correction
— Use interleaving to reduce impact

5 Computer Science CS677: Distributed OS Lecture 10, page26

Enforcing QoS (1)

Packet departs source @
Packet arrives at buffer E|
Packet removed from buffer l‘ Time In oufter ; @
G
A TR N N T A B

ap in playback
Lo 0 a0 [
0 5 10 15 20

Time (sec)

Computer Science Lecture 10, page27

Enforcing QoS (2)

Lost packet

Sent [s][e][7][e])|[=] (10l 1] izl
Delivered - [1] [2] [3] [4] [5] [6] [7] [¢] [9] [i0] [i] [12] [13] [14] [1¢] [1¢]

Gap of lost frames

(@)

Lost packet

Sent | [1][s][o][13]||[2][e]1d[14]
Calivered @@

Lost frames

 Can also use forward error correction (FEC)

OF Mis

} Computer Science Lecture 10, page28

HTTP Streaming

« UDP is inherently better suited for streaming
— Adaptive streaming, specialized streaming protocols

* Yet, almost all streaming occurs over HTTP (and TCP)
— Universal availability of HTTP, no special protocol needed

 Direct Adaptive Streaming over HTTP (DASH)

— Intelligence is placed at the client

sizkops [(D (N
256 kbps N .
128 kbps ~ B . m— '

. . —Time
http http http® hﬁp"-

< <

L g0 . .‘ ..‘
£ o2 ‘ Client
Computer Science Lecture 10, page29

Stream synchronization

* Multiple streams:
— Audio and video; layered video

* Need to sync prior to playback

— Timestamp each stream and sync up data units prior to
playback

« Sender or receiver?
* App does low-level sync

— 30 fps: image every 33ms, lip-sync with audio
« Use middleware and specify playback rates

) Computer Science CS677: Distributed OS Lecture 10, page30

Synchronization Mechanism

Receiver's machine

Application
Procedure that reads

two audio data units for
each video data unit JV C]
-

Incoming stream Y >[ﬂ
i OS

Network

Application tells
Receiver's machine middleware what

Multimedia control to do with incoming
tmed icati streams
is part of middleware Application
0
v
Middleware layer — —|:_>i
Incoming stream (O]

Network ~===""7-

) Computer Science

Multicasting

« Group communication

— IP multicast versus application-level multicast

— Construct an overlay multicast tree rooted at the sender

— Send packet down each link in the tree

* Issues: tree construction, dynamic joins and leaves

) Computer Science CS677: Distributed OS

Lecture 10, page31

Lecture 10, page32

Overlay Construction

End host Rout
outer
A) 1 i1 6
50
Ra——e— = = = s = = = —Rc
5
7
4 Rd
J|Roff— """ 1
Internet D
B

Overlay network

Computer Science Lecture 10, page33

