
Computer Science Lecture 6, page

Module 1: OS Virtualization
• Emulate OS-level interface with native interface
• “Lightweight” virtual machines

– No hypervisor, OS provides necessary support

• Referred to as containers
– Solaris containers, BSD jails, Linux containers

!1

Computer Science Lecture 6, page

Linux Containers (LXC)
• Containers share OS kernel of the host

– OS provides resource isolation
• Benefits

– Fast provisioning, bare-metal like performance, lightweight

!2

Material courtesy of
“Realizing Linux Containers”

by Boden Russell, IBM

Computer Science Lecture 6, page

OS Mechanisms for LXC
• OS mechanisms for resource isolation and

management

• namespaces: process-based resource isolation

• Cgroups: limits, prioritization, accounting, control

• chroot: apparent root directory
• Linux security module, access control
• Tools (e.g., docker) for easy management

!3

Computer Science Lecture 6, page

Linux Namespaces
• Namespace: restrict what can a container see?

– Provide process level isolation of global resources
• Processes have illusion they are the only processes in

the system
• MNT: mount points, file systems (what files, dir are

visible)?
• PID: what other processes are visible?
• NET: NICs, routing
• Users: what uid, gid are visible?

• chroot: change root directory

!4

Computer Science Lecture 6, page

Linux cgroups
• Resource isolation

– what and how much can a container use?
• Set upper bounds (limits) on resources that can be used
• Fair sharing of certain resources

• Examples:
– cpu: weighted proportional share of CPU for a group
– cpuset: cores that a group can access
– block io: weighted proportional block IO access
– memory: max memory limit for a group

!5

Computer Science Lecture 6, page

Module 2: Proportional Share Scheduling
– Uses a variant of proportional-share scheduling

• Share-based scheduling:
– Assign each process a weight w_i (a “share”)
– Allocation is in proportional to share
– fairness: reused unused cycles to others in proportion to weight
– Examples: fair queuing, start time fair queuing

• Hard limits: assign upper bounds (e.g., 30%), no
reallocation

• Credit-based: allocate credits every time T, can
accumulate credits, and can burst up-to credit limit
– can a process starve other processes?

!6

Computer Science Lecture 6, page

Share-based Schedulers

!7

Computer Science Lecture 6, page

Putting it all together
• Images: files/data for a container

– can run different distributions/apps on a host
• Linux security modules and access control
• Linux capabilities: per process privileges

!8

Computer Science Lecture 6, page

Module 3: Docker and Linux Containers
• Linux containers are a set of kernel features

– Need user space tools to manage containers
– Virtuozo, OpenVZm, VServer,Lxc-tools, Docker

• What does Docker add to Linux containers?
– Portable container deployment across machines
– Application-centric: geared for app deployment
– Automatic builds: create containers from build files
– Component re-use

• Docker containers are self-contained: no
dependencies

!9

Computer Science Lecture 6, page

Docker
• Docker uses Linux containers

!10

Computer Science Lecture 6, page

LXC Virtualization Using Docker

• Portable: docker images run anywhere docker runs
• Docker decouples LXC provider from operations

– uses virtual resources (LXC virtualization)
• fair share of physical NIC vs use virtual NICs that are fair-

shared

!11

Computer Science Lecture 6, page

Docker Images and Use
• Docker uses a union file system (AuFS)

– allows containers to use host FS safely
• Essentially a copy-on-write file system

– read-only files shared (e.g., share glibc)
– make a copy upon write

• Allows for small efficient container images
• Docker Use Cases

– “Run once, deploy anywhere”
– Images can be pulled/pushed to repository
– Containers can be a single process (useful for

microservices) or a full OS

!12

Computer Science Lecture 6, page

Use of Virtualization Today
• Data centers:

– server consolidation: pack multiple virtual servers onto a
smaller number of physical server

• saves hardware costs, power and cooling costs
• Cloud computing: rent virtual servers

– cloud provider controls physical machines and mapping of
virtual servers to physical hosts

– User gets root access on virtual server
• Desktop computing:

– Multi-platform software development
– Testing machines
– Run apps from another platform

!13

Computer Science Lecture 6, page

Case Study: PlanetLab

• Distributed cluster across universities
– Used for experimental research by students and faculty in

networking and distributed systems
• Uses a virtualized architecture

– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

!14

Computer Science Lecture 7, page CS677: Distributed OS

Module 4: Server Design Issues

• Server Design
– Iterative versus concurrent

• How to locate an end-point (port #)?
– Well known port #
– Directory service (port mapper in Unix)
– Super server (inetd in Unix)

!15

Computer Science Lecture 7, page CS677: Distributed OS

Stateful or Stateless?

• Stateful server
– Maintain state of connected clients
– Sessions in web servers

• Stateless server
– No state for clients

• Soft state
– Maintain state for a limited time; discarding state does not

impact correctness

!16

Computer Science Lecture 7, page CS677: Distributed OS

Server Clusters

• Web applications use tiered architecture
– Each tier may be optionally replicated; uses a dispatcher
– Use TCP splicing or handoffs

!17

Computer Science Lecture 7, page CS677: Distributed OS

Server Architecture

• Sequential
– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication
• Concurrent

– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

!18

Computer Science Lecture 7, page CS677: Distributed OS

Scalability

• Question:How can you scale the server capacity?
• Buy bigger machine!
• Replicate
• Distribute data and/or algorithms
• Ship code instead of data
• Cache

!19

