Pervasive Computing, IoT and Smart Buildings

Srinivasan Iyengar
srini@cs.umass.edu

Pervasive Computing

• Computing is becoming increasingly ubiquitous
• Sensing and computing “everywhere”
 • Increasingly part of physical environments
 • Enables many new application domains

Smart Health Smart Buildings Smart Transportation Smart Agriculture
Rise of Pervasive Computing

- Miniaturization of computing
 - Tiny sensors with computing and communication capability
 - MEMS: MicroElectroMechanical Systems
 - Expectation: Moore’s law-like growth in MEMS
- Rise of internet of things
 - Network of Physical Devices
 - Ability to network devices and have them communicate
 - Large network of sensors

Smart Health

- Early Wearables devices
 - Fitness, exercise tracking
 - Sleep, heart rate, …
- New technologies emerging:

 - Smart Glasses
 - On-body monitoring
 - Gaze tracking, fatigue detection
Smart Buildings

- Proliferation of smart devices in homes
 - Thermostat
 - Smart Plug
 - Smart Appliances
 - Smart Lock

- Phone and voice interfaces:

Smart Transportation

- Smart Roadways
 - Reactive Lights/Dynamic Lanes
 - Road Condition Monitoring
 - Traffic Management

- Connected Cars
 - Accident avoidance
 - Fleet Management
 - Real time public transport alerts
Typical smart app

- Personal device to mobile phone to the cloud
 - Upload data to cloud via a mobile device (or directly)
 - Low-power communication to phone
 - Cloud provides analytics and provides feedback to phone

- Environmental sensors to internet to the cloud
 - Internet-enabled sensors
 - Upload to directly to servers / cloud through a router
 - Cloud provides analytics and provides dashboard

Sensor Platform

- Smart devices are a sensor node
- Resource-constrained distributed system
- Typical Sensor platform
 - Small CPUs
 - E.g. 8bit, 4k RAM
 - Low-power radios for communication
 - 10-200kbit/sec
 - Sensors
 - Battery driven or self-powered
 - Flash storage
Small CPUs

- Example: Atmel AVR
 - 8 bit
 - 4 KB RAM
 - 128 KB flash on-chip
 - ~8 mA

- Example: TI MSP430
 - 16 bit
 - 10 KB RAM
 - 48 KB flash
 - 2 mA

Higher-powered processors:
- ARM7 - 32 bit, 50 MHz, >>1MB RAM
- ARM9 - 32 bit, 400 MHz, >>16MB RAM

Low Power Radios

- Industrial, Scientific and Medical (ISM) Band
 - 900 MHz (33 cm), 2400 MHz (Bluetooth)

- Varying modulation and protocol
 - Zigbee (IEEE 802.15.4) – Modulating Phase
 - Bluetooth (IEEE 802.15.1) – Modulating Frequency

- Short range
 - Typically <100 m

- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive

- Listening can take more energy than transmitting
Battery power

• Example: Mica2 “mote”
 • Total battery capacity: 2500mAH (2 AA cells)
 • System consumption: 25 mA (CPU and radio on)
 • Lifetime: 100 hours (4 days)

• Alternatives:
 • Bigger batteries
 • Energy Harvesting (Solar/Wind/Motion)
 • Duty cycling

Sensors

• Temperature
• Humidity
• Magnetometer
• Vibration
• Acoustic
• Light
• Motion (e.g. passive IR)
• Imaging (cameras)
• Accelerometer
• GPS
• Lots of others…
Self-harvesting Sensors

- Harvest energy from environment to power themselves
 - tiny solar panels,
 - use vibration,
 - thermal,
 - airflow, or
 - wireless energy

Typical Design Issues

- Single node
 - Battery power/how to harvest energy to maximize lifetime
- Inside a network of sensors
 - Data aggregation
 - Duty cycling
 - Localization, Synchronization
 - Routing
- Once data is brought out of the network (server-side processing)
 - “Big data” analytics
 - Derive insights
 - Make recommendations, send alerts
 - Provide active control
Green Computing

- Greening of Computing
 - Sustainable IT
 - How to design energy-efficient hardware, software and systems?

- Computing for Greening
 - Use of IT to make physical infrastructure efficient
 - Homes, offices, buildings, transportation

Historical Overview

- Energy-efficient mobile devices a long standing problem
 - Motivation: better battery life, not green

- Recent growth of data centers
 - More energy-efficient server design
 - Motivation: lower electricity bills
 - Green systems, lower carbon footprint

- Apply “Greening” to other systems
 - IT for Greening
Computing and Power Consumption

• Energy to Compute
 • 20% power usage in office buildings
 • 50-80% at a large college
 • 3% of our carbon footprint and growing

• Data centers are a large fraction of the IT carbon footprint
 • PCs, mobile devices also a significant part

What is a data center?

• Facility for housing a large number of servers and data storage
• Google data center (Dalles, OR)
 • 12 football fields in size
 • ~100K servers
• 100 MW of power
 • Enough for a small city
Data Center Energy Cost

Energy Bill of a Google Data Center

• Assume 100,000 servers
• Monthly cost of 1 server
 • 500W server
 • Cost=(Watts X Hours / 1000) * cost per KWH
 • Always-on server monthly cost = $50
• Monthly bill for 100K servers = $5M
• What about cost of cooling?
 • Use PUE (power usage efficiency)
 • PUE = 2 => cost doubles
 • Google PUE of 1.2 => 20% extra on 5M (~ $6M)
How to design green data centers

• A green data center will
 • Reduce the cost of running servers
 • Cut cooling costs
 • Employ green best practices for infrastructure

Reducing server cost

• Buy / design energy-efficient servers
 • Better hardware, better power supplies
 • DC is more energy-efficient than AC

• Manage your servers better!
 • Intelligent power management
 • Turn off servers when not in use
 • Virtualization => can move apps around
Reducing cooling cost

- Better air conditioning
 - Thermal engineering / better airflow
 - Move work to cooler regions

- Newer cooling
 - Naturally cooled data centers
 - Underground bunkers

Build them in Iceland

- Free cooling-based data centers
Desktop management

- Large companies => 50K desktops or more
 - Always on: no one switches them off at night
 - Night IT tasks: backups, patches etc.

- Better desktop power management
 - Automatic sleep policies
 - Automatic / easy wakeups [see Usenix 2010]

IT for Greening

- How can we use IT to make buildings green?
 - Use sensors, smart software, smart appliances, smart meters

- Building as an example of a distributed system
 - Sensors monitor energy, occupancy, temperature etc.
 - Analyze data
 - Exercise control switch of lights or turn down heat in unoccupied zones
 - Use renewables to reduce carbon footprint
Approach

- Home AMI PMU, in-network devices
- Measure and monitor
- Improved situational assessment, management, response

- Machine learning, data analytics
- Deep analytics and prediction
- Improved forecasting for energy generation, demand, transmission

- Operational requirements
- Control, operations
- More efficient use of renewables, cost decreases and improved demand response

Building Monitoring

- Power monitoring at different levels -
 - Outlet-level monitoring
 - Meter-level monitoring

- Wemo Smart Plug
- eGauge Meter with interface
- Smart meter
Analyzing the data

• Energy monitors / sensors provide real-time usage data
 • Building monitoring systems (BMS) data from office / commercial buildings

• Modeling, Analytics and Prediction
 • Use statistical techniques, machine learning and modeling to gain deep insights
 • Which homes have inefficient furnaces, heaters, dryers?
 • Are you wasting energy in your home?
 • Is an office building’s AC schedule aligned with occupancy patterns?
 • When will the aggregate load or transmission load peak?

Learning Thermostats
Does Your Thermostat need help

A/C signatures

Meter data

A/C signature

Use Renewables

- Significant growth in renewable energy adoption
 - Rooftop Wind Turbines
 - Solar PV installation
 - Solar Thermal (to heat water)

- Highly Intermittent
 - Cloud cover, temperature, ……..

UMassAmherst
Forecasting renewable energy

- Design predictive analytics to model and forecast energy generation from renewables
 - Use machine learning and NWS weather forecasts to predict solar and wind generation

- Better forecasts of near-term generation; “Sunny load” scheduling

Use case – EV Charging Station

- Solar panels installed in parking lots, rest areas, paid garages
 - Possible use case in offices and car rental services

- Assumptions
 - Arrival/departure times for EVs
 - Accurate Solar predictions

- Need intelligence in charging schedules
 - When to charge?
 - Which EV to charge?
 - How much?
People: Feedback and Incentives

- How to exploit big data to motivate consumers to be more energy efficient?
 - What incentives work across different demographics?
 - Deployments + user studies

- Big data methods can reveal insights into usage patterns, waste, efficiency opportunities
 - Smart phone as an engagement tool to deliver big data insights to end-users
 - Provide highly personalized recommendations, solicit user inputs, motivate users

Summary

- Greening of computing
 - Design of energy-efficient hardware & software

- Computing for greening
 - Use of IT for monitoring, analytics, and control
 - Use of intelligent software for power management
 - Forecasting for renewable energy harvesting