Distributed Data Processing

- Big data processing framework
- Hadoop / Map Reduce
- Spark

material courtesy of Natl Inst of Computational Sciences/ ORNL / Baer, Begoli et. al
Big Data Applications

- Very large datasets, need to distribute processing of data sets
 - Parallelize data processing

‘Big Data’ Platform

- Image and sensor data
- Personal/genomic data
- Financial and administrative data
- Clinical data
MapReduce Programming Model

- Map Phase and Reduce Phase, connected by a shuffle
Other Programming Models

- Extend MapReduce to Directed Acyclic Graphs with recovery
 - Apache Tez,

- Microsoft’s Dryad and Naiad

- DAG with in-memory resilient distributed data sets
 - Spark

- Extend DAG model to cyclic graphs: Flink

- Allow streaming data: Spark Streaming, Naiad, Kafka, Flink
Hadoop Big Data Platform

- Popular platform for processing large amounts of data

- EcoSystem:
 - Storage managers: HDFS, HBASE, Kafka, etc.
 - Processing framework: MapReduce, Spark, etc.
 - Resource managers: Yarn, Mesos, etc.
Ecosystem
Ecosystem overview

- General purpose framework: low level processing APIs
 - MapReduce, Spark, Flink
- Abstraction frameworks: higher level abstractions for processing
 - Pig
- SQL frameworks: allow data querying: Hive
- Graph processing frameworks: Giraph
- Machine learning frameworks: MLlib, Oyyx (standalone: TensorFlow)
- Real-time/stream processing: Spark Streaming, Storm, Kafka
- Cluster managers: YARN, Mesos (allocate machines to separate frameworks).
Ecosystem Overview
Spark Platform

- Ease of use: supports Java, Scala or Python
- General: combines SQL, streaming, ML, graph processing
- Faster due to in-memory RDDs
- Compatibility: runs on Hadoop, standalone, etc
Spark Architecture

- Resilient Distributed Datasets: **distributed memory**
 - objects cached in RAM across a cluster
- DAG execution engine: eliminates MapReduce multi-stage model
- RDD Narrow transform: Map, Filter, Sample
- RDD Wide transform: SortBy, ReduceBy, GroupBy, Join
- Action: Collect, Reduce