Last Class

* Leader election

* Distributed mutual exclusion

OF M

Computer Science CS677: Distributed OS Lecture 15, page |

A5
NI
(7
i
24
Ay

N W
7 %' (Y

) =S
(ERST

Decentralized Algorithm

* Use voting
* Assume n replicas and a coordinator per replica

* To acquire lock, need majority vote m > n/2
coordinators
— Non blocking: coordinators returns OK or “no”

* Coordinator crash => forgets previous votes
— Probability that k coordinators crash P(k) = ™C, p* (1-p)m-k

— Atleast 2m-n need to reset to violate correctness
° Z 2m-n nP(k)

‘lF‘ Sq
»H &L ©
£y S 2
g
i
S

Z a Compufep Science CS677: Distributed OS Lecture 15, page 2

A,
O, X% £
D &5
CAERST o

Distributed Algorithm

[Ricart and Agrawala]: needs 2(n-1) messages
* Based on event ordering and time stamps
— Assumes total ordering of events in the system (Lamport’s clock)
* Process k enters critical section as follows
— Generate new time stamp 7S, = 75, +1
— Send request(k,TS,) all other n-1 processes
— Wait until reply(j) received from all other processes
— Enter critical section

« Upon receiving a request message, process j
— Sends reply if no contention
— If already in critical section, does not reply, queue request
— If wants to enter, compare 7S; with 75 and send reply 1f 75, <TS,, else
queue

¥ MA

S5,

SN :4@9
2 a Compufep Science CS677: Distributed OS Lecture 15, page 3

M.

e
NEPC
4 == &5
ERST &

R

A Distributed Algorithm

Enters
critical
3 region
0 0 0
8 Nz OK oK OK
8 > — +—. Enters
1 N 2 w @ critical
12 OK region
12
(@) (b) ()
a) Two processes want to enter the same critical region at the same
moment.
b) Process 0 has the lowest timestamp, so it wins.
C) When process 0 is done, it sends an OK also, so 2 can now enter the

OF M4 »

5,
& C‘<
£/ gk ¢
Y o> B
z g
= i%' ' &
D, 2% L)
=5

critical region.

Computer Science CS677: Distributed OS

74
S
(ERST

Lecture 15, page 4

Properties

 Fully decentralized
* N points of failure!

* All processes are involved 1n all decisions
— Any overloaded process can become a bottleneck

F o
D, A) .
Z :% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 5

A Token Ring Algorithm

P N s PP

PPPPPPPPPE

(a) (b)

a) Anunordered group of processes on a network.

b) Alogical ring constructed in software.
« Use a token to arbitrate access to critical section
* Must wait for token before entering CS
» Pass the token to neighbor once done or if not interested
* Detecting token loss 1n non-trivial

& o,

g PN B) .

z i 5 Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 6
s

Comparison

Algorithm Messagc_as per Delay befo_re entry (in Problems
entry/exit message times)

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2(n=1) 2(n=1) Crash of any
process

Token ring 1to o« Oton-1 Lost token, process
crash

* A comparison of four mutual exclusion algorithms.

M50

§ O$J O
N i . .
2 ﬂ 5 CS677: Distributed OS Lecture 15, page 7

Computer Science

«[1 [76

Transactions

-Transagtions provi@e higher level Client 1 Client 2
mechanism for atomicity of
processing in distributed systems Read A: $100
— Have their origins in databases Write A: $96
*Banking example: Three Read C: $300

accounts A:$100, B:$200, C:$300
— Client 1: transfer $4 from A to B

Write C:$297

— Client 2: transfer $3 from C to B Read B: $200
*Result can be inconsistent unless Read B: $200
certain properties are imposed on Write B:$203

the accesses

Write B:$204

QFMAg
~ Sq
§ &L @
&

M &
7 =N 2
S é‘ > G
A \+ ~
SN\ /78 “,
ST

/Computer Science CS677: Distributed OS Lecture 15, page 8

:
A

41[76‘}{

ACID Properties

*Atomic: all or nothing Client 1 Client 2
*Consistent: transaction takes Read A: $100
system from one consistent state to Write A: $96
another '
*Isolated: Immediate effects are Reéd B: $200
not visible to other (serializable) Write B:$204
*Durable: Changes are permanent Read C: $300
once transaction completes Write C:$297
(commits)

Read B: $204

Write B:$207

A
~ Sq
& @

[e)
&

/Computer Science CS677: Distributed OS Lecture 15, page 9

:
A

M &
7 =N 2
S é‘ > G
A \+ ~
SN\ /78 “,
), L% &
ST

41[7“{

Transaction Primitives

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Example: airline reservation

Begin_transaction
if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

_End_transaction
/Computer Science CS677: Distributed OS Lecture 15, page 10

§ & @
in \@ "
SRR s,
= \H B
A\ \&e' 20N~
= ,_; /e,
7 QA
. A
RST *

«[1176

Distributed Transactions

l Nested transaction . Distributed transaction

ISubtransaotion 1 ISubtransaction .

ISubtransao’cion . ISub’cransaction 1

Airline databa% /H'otel database P

Distributed database

Two different (independent) Two physically separated
databases parts of the same database
(a) (b)
N T %
7 % Compu'l'er' Science CS677: Distributed OS Lecture 15, page 11
< ”/&-R 4

Implementation: Private Workspace

» Each transaction get copies of all files, objects

» Can optimize for reads by not making copies

» Can optimize for writes by copying only what 1s required
» Commit requires making local workspace global

Private
workspace

Original

Free blocks

(2) (b) (c)

F M4 oo
5 o 'S
& 7
Q:;} C«,c
S TEwiao
4 L \‘ga 3
RS 7 S5
B\UL

b, N &
ST

» § Computer Science CS677: Distributed OS Lecture 15, page 12
P

Option 2: Write-ahead Logs

» In-place updates: transaction makes changes directly to all files/objects

* Write-ahead log: prior to making change, transaction writes to log on stable
storage

— Transaction ID, block number, original value, new value
* Force logs on commit
« If abort, read log records and undo changes [rollback]

* Log can be used to rerun transaction after failure

* Both workspaces and logs work for distributed transactions

e Commit needs to be atomic [will return to this issue in Ch. 7]

O

Ok MA'S:LI
y L ©®
S =k 2
= e =
Z *fi) B
2 % -
7 Q554 &5
ERST * g

41"\/

Computer Science CS677: Distributed OS Lecture 15, page 13

Writeahead Log Example

x =0; Log Log Log
y=0;

BEGIN _TRANSACTION;

X=X+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y = 0/2] [y = 0/2]
X=y™ry; [x = 1/4]

END_TRANSACTION;
(@) (b) (c) (d)

* a) A transaction
 b)—d) The log before each statement 1s executed

CS677: Distributed OS Lecture 15, page 14

Concurrency Control

* Goal: Allow several transactions to be executing
simultaneously such that

— Collection of manipulated data item 1s left in a consistent state

* Achieve consistency by ensuring data items are accessed
in an specific order

— Final result should be same as if each transaction ran
sequentially

» Concurrency control can implemented 1n a /ayered tashion

4 B
& & ©®

4
& o
=

>

oF
R
a5

Computer Science CS677: Distributed OS Lecture 15, page 15

VA
S 2
B R @
el =
\\+ a‘ 5

L/
N
ERS
RST *

Concurrency Control Implementation

Transactions

\y/

Transaction | BEGIN_TRANSACTION
manager END_TRANSACTION

vV A
LOCK/RELEASE

Scheduler or
Timestamp operations
v A

Data Execute read/write
manager

READMWRITE

* General organization of managers for handling transactions.

OF M

Compu'l'er' Science CS677: Distributed OS Lecture 15, page 16

,‘l_j:r
NI
(i
i
24
Ay

N W
7 %' (Y

) =S
(ERST

Distributed Concurrency Control

* General organization of

\' i J managers for handling
distributed transactions.
Transaction
manager

AN

N
‘ Scheduler Scheduler Scheduler

A
Data Data Data
manager manager manager
Machine A Machine B Machine C
9 a% Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 17
2 \%@-

Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x =0; x =0; x = 0;
X=X+1; X=X+2; X=X+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(a) (b) (c)
Schedule 1 Xx=0; x=x+1;, x=0; x=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; Legal
Schedule 3 Xx=0; x=0; x=x+1;, x=0; x=x+2; X=X+ 3; lllegal

« Key idea: properly schedule conflicting operations

« Conlflict possible if at least one operation 1s write
— Read-write conflict
— Write-write conflict

Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 18

Optimistic Concurrency Control

* Transaction does what 1t wants and validates changes prior to
commit

— Check i1f files/objects have been changed by committed transactions since
they were opened

— Insight: conflicts are rare, so works well most of the time
* Works well with private workspaces

» Advantage:

— Deadlock free
— Maximum parallelism

« Disadvantage:
— Rerun transaction if aborts
— Probability of conflict rises substantially at high loads

* Not used widely

D [) o
z :% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 19

Two-phase Locking

* Widely used concurrency control technique

* Scheduler acquires all necessary locks 1n growing phase,
releases locks 1n shrinking phase
— Check if operation on data item x conflicts with existing locks
* If so, delay transaction. If not, grant a lock on x
— Never release a lock until data manager finishes operation on x
— One a lock 1s released, no further locks can be granted

* Problem: deadlock possible

— Example: acquiring two locks 1n different order
 Distributed 2PL versus centralized 2PL

; Compu‘rer Science CS677: Distributed OS Lecture 15, page 20
& "’%."@“

Two-Phase Locking

Lock point

Growing phase Shrinking phase

« »

N S

Number of locks

Time —»

» Two-phase locking.

o
D [. e
Eﬁ Eigv)- Compu'l'er' Science CS677: Distributed OS Lecture 15, page 21

Strict Two-Phase Locking

Lock point

Growing phase Shrinking phase

<« »

All locks are released
at the same time

A

Number of locks

N

Time —»

 Strict two-phase locking.

pe) h \
% 5% 5* Computer Science CS677: Distributed OS Lecture 15, page 22

Timestamp-based Concurrency Control

* Each transaction T1 1s given timestamp ts(T1)

 If T1 wants to do an operation that conflicts with Tj
— Abort Ti if s(Ti) < ts(Tj)

 When a transaction aborts, 1t must restart with a new
(larger) time stamp

 Two values for each data item x

— Max-rts(x): max time stamp of a transaction that read x
— Max-wts(x): max time stamp of a transaction that wrote x

i 3 : ; Compu'l'er' Science CS677: Distributed OS Lecture 15, page 23
7)) S &

Reads and Writes using Timestamps

» Read(x)
— It ts(T,) < max-wts(x) then Abort T;

— Else
o Perform R;(x)

« Max-rts(x) = max(max-rts(x), ts(T)))
« Write,(x)
— If ts(T,)<max-rts(x) or ts(T,)<max-wts(x) then Abort T,

— Else
 Perform W (x)

« Max-wts(x) = ts(T))

y oi&&s 3
E’i g;% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 15, page 24

Pessimistic Timestamp Ordering

tspp(™®) tsr() ts(To)

@ @ @
(a) Time —»

tsr(X) tSppX) ts(T)

\ Do
tentative

write

ts(T2)

tsr(*)

)

(e) Time —»

tSWR(X) tStent (%) tS(TZ)

‘ (Tp) OK

@ |w @ @ @ @ oK
(b) Time —» (f) Time —»
ts(Ty) tSpp(X) ts(Ty) tsyyr(X) \
| @ \ | @)
() Time —» Abort (Q) fime = Abort
ts(T) tSWR(X) ts(T2) tstent(x)
T | @) @ @
(d) Time —» (h) Time —»

CS677: Distributed OS Lecture 15, page 25

OF M4 f
& & B
Y W
%%
b, N &

li”:’RsT'\\

Computer Science

