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Virtualization

Program

Program Interface A

Implementation of

inferface A mimicking A on B
_____________________________ Interface B
Hardware/software system A Hardware/software system B
@ °

 Virtualization: extend or replace an existing interface to
mimic the behavior of another system.

— Introduced 1n 1970s: run legacy software on newer mainframe
hardware

» Handle platform diversity by running apps in VMs
— Portability and flexibility
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Types of Interfaces

Library functions Application

= [

Library
System calls
= I
Privileged Operating system Sena
instructions = i =— instructions

Hardware

 Different types of interfaces
— Assembly instructions

— System calls
— APIs

* Depending on what 1s replaced /mimiced, we obtain
different forms of virtualization
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Types of Virtualization

* Emulation
— VM emulates/simulates complete hardware

— Unmodified guest OS for a different PC can be run
* Bochs, VirtualPC for Mac, QEMU

* Full/native Virtualization

— VM simulates “enough” hardware to allow an unmodified
guest OS to be run 1n i1solation

e Same hardware CPU
— IBM VM family, VM Ware Workstation, Parallels, VirtualBox
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Types of virtualization

* Para-virtualization
— VM does not simulate hardware
— Use special API that a modified guest OS must use
— Hypercalls trapped by the Hypervisor and serviced
— Xen, VMWare ESX Server

* OS-level virtualization
— OS allows multiple secure virtual servers to be run
— Guest OS 1s the same as the host OS, but appears 1solated
* apps see an isolated OS
— Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker

* Application level virtualization
— Application 1s gives its own copy of components that are not shared

* (E.g., own registry files, global objects) - VE prevents conflicts
— JVM, Rosetta on Mac (also emulation), WINE
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Types of Hypervisors

Guest OS process

Excel Word Mplayer Apollon é Host OS
O O process
Y 3 Guest OS Cg
Type 2 hypervisor O
Type 1 hypervisor Host operating system

(a) (b)
* Type 1: hypervisor runs on “bare metal”

» Type 2: hypervisor runs on a host OS

— QGuest OS runs inside hypervisor

* Both VM types act like real hardware
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How Virtualization works?

* CPU supports kernel and user mode (ring0, ring3)
— Set of instructions that can only be executed in kernel mode
 I/O, change MMU settings etc -- sensitive instructions
— Privileged instructions: cause a trap when executed in kernel mode

» Result: type 1 virtualization feasible 1f sensitive instruction subset
of privileged instructions

 Intel 386: 1gnores sensitive instructions in user mode
— Can not support type 1 virtualization

* Recent Intel/AMD CPUs have hardware support
— Intel VT, AMD SVM
 Create containers where a VM and guest can run
* Hypervisor uses hardware bitmap to specify which inst should trap
* Sensitive inst in guest traps to hypervisor
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Type 1 hypervisor

/ User process

O Q } Virtual user mode
Virtual User

machine mode

Guest operating system \ } Virtual kernel mode

Kemel

Type 1 hypervisor }) Trap on privileged instruction mode

~

Hardware

* Unmodified OS 1s running in user mode (or ring 1)
— But 1t thinks 1t 1s running in kernel mode (virtual kernel mode)
— privileged 1nstructions trap; sensitive inst-> use VT to trap
— Hypervisor 1s the “real kernel”
» Upon trap, executes privileged operations
* Or emulates what the hardware would do
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Type 2 Hypervisor

 VMWare example
— Upon loading program: scans code for basic blocks
— If sensitive instructions, replace by Vmware procedure
* Binary translation
— Cache modified basic block in VM Ware cache
* Execute; load next basic block etc.

* Type 2 hypervisors work without VT support

— Sensitive instructions replaced by procedures that emulate
them.
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Paravirtualization

True virtualization

O O

~

Paravirtualization

/

O O

Trap due
U dified Wind to sensitive Modified Li
nmodifie indows —_| instruction odified Linux \(/
— _ )
Type 1 hypervisor : Microkernel
Hardware

Trap due
to hypervisor
call

* Both type 1 and 2 hypervisors work on unmodified OS
 Paravirtualization: modify OS kernel to replace all
sensitive instructions with hypercalls

— OS behaves like a user program making system calls
— Hypervisor executes the privileged operation invoked by

hypercall.
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Virtual machine Interface

VMI Linux VMI Linux VMI Linux
VMIL/HWinterface lib. VMIL to Vmware lib. VMIL to Xen library
Sensitive - -
- struction v Hypervisor call y Hypervisor call
ﬁlﬁcuted by VMware Xen
Hardware Hardware Hardware

(@) (b) (c)

e Standardize the VM interface so kernel can run on bare
hardware or any hypervisor
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Memory virtualization

* OS manages page tables
— Create new pagetable 1s sensitive -> traps to hypervisor

* hypervisor manages multiple OS

— Need a second shadow page table

— OS: VM virtual pages to VM’s physical pages

— Hypervisor maps to actual page in shadow page table

— Two level mapping

— Need to catch changes to page table (not privileged)
* Change PT to read-only - page fault
 Paravirtualized - use hypercalls to inform
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/0O Virtualization

» Each guest OS thinks it “owns” the disk

» Hypervisor creates “virtual disks”

— Large empty files on the physical disk that appear as “disks” to
the guest OS

* Hypervisor converts block # to file offset for I/O
— DMA need physical addresses
» Hypervisor needs to translate
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Examples

I l | I
Application Applications | I
I . ] | | m m
Runtime system 1 Operating system
Operating system Virtual machine monitor
Hardware | - I
Hardware
(a)
(b)
* Application-level virtualization: “process virtual
machine”
* VMM /hypervisor
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Virtual Appliances & Multi-Core

* Virtual appliance: pre-configured VM with OS/ apps
pre-installed
— Just download and run (no need to install/configure)
— Software distribution using appliances

 Multi-core CPUs

— Run multiple VMs on multi-core systems
— Each VM assigned one or more vCPU
— Mapping from vCPUs to physical CPUs

» Today: Virtual appliances have evolved into docker containers
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Use of Virtualization Today

 Data centers:

— server consolidation: pack multiple virtual servers onto a
smaller number of physical server

* saves hardware costs, power and cooling costs

* Cloud computing: rent virtual servers

— cloud provider controls physical machines and mapping of
virtual servers to physical hosts

— User gets root access on virtual server
* Desktop computing:

— Multi-platform software development

— Testing machines

— Run apps from another platform
§ Computer Science PP P Lecture 4, page34
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Case Study: PlanetLab

User-assigned Priviliged management
virtual machines virtual machines
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Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

» Distributed cluster across universities

— Used for experimental research by students and faculty in
networking and distributed systems

e Uses a virtualized architecture

— Linux Vservers

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service
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