Processes and Threads

* Processes and their scheduling

* Multiprocessor scheduling
* Threads
 Distributed Scheduling/migration

¥ M4 o8

4}
N

OF M,
\ 2
o

< s S
"y e
Z E =
‘9(4
‘/l%@‘

g
i)
5

¥ 5 Computer Science CS677: Distributed OS Lecture 3, page 1
4"\/11-1{.

Computing Parables

 The Lion and the Rabbit - Part 1

* courtesy: S. Keshav, U. Waterloo

OF M4 f
& & B
Y W
%%
b, N &

li”:’RsT'\\

Computer Science Lecture 3, page 2

Processes: Review

* Multiprogramming versus multiprocessing
» Kernel data structure: process control block (PCB)

* Each process has an address space
— Contains code, global and local variables..

* Process state transitions

* Uniprocessor scheduling algorithms
— Round-robin, shortest job first, FIFO, lottery scheduling, EDF

» Performance metrics: throughput, CPU utilization,
turnaround time, response time, fairness

2 \[y) 5 Computer Science CS677: Distributed OS Lecture 3, page 3
O N £

Process Behavior

* Processes: alternate between CPU and 1/0O
 CPU bursts

— Most bursts are short, a few are very long (high variance)
— Modeled using hyperexponential behavior

— If X i1s an exponential t.v. t

¢ PriX<=x]=1-ew a. lﬁ\

- E[X]=1/u I
— If X 1s a hyperexponential t.v. AN

e PrX<=x]=1-penx (I-p)en2x ° oo
* E[X]=p/ul + (1-p)/ u2

Ag

& X
»H &L ©
i

(>
N (
= Bt El
8
2 5
7
§

0
\

i Compu'l'er' Science CS677: Distributed OS Lecture 3, page 4
s

e

> 8

’)

», ~

o é’)
O\ &

Process Scheduling

* Priority queues: multiples queues, each with a different
priority

— Use strict priority scheduling

— Example: page swapper, kernel tasks, real-time tasks, user tasks
« Multi-level feedback queue

— Multiple queues with priority — 10

— Processes dynamically move from one queue to another % O

» Depending on priority/CPU characteristics

— Gives higher priority to I/0 bound or interactive tasks

— Lower priority to CPU bound tasks

— Round robin at each level

¥ M4 o0

4
& <5
£ o R

OF M
SR\ e
2\l
ST

2 3 Computer Science CS677: Distributed OS Lecture 3, page 5
D, =T A

5
ERST *

Processes and Threads

» Traditional process

— One thread of control through a large, potentially sparse address
space

— Address space may be shared with other processes (shared mem)
— Collection of systems resources (files, semaphores)

* Thread (light weight process)
— A flow of control through an address space
— Each address space can have multiple concurrent control flows
— Each thread has access to entire address space
— Potentially parallel execution, minimal state (low overheads)
— May need synchronization to control access to shared variables

¥ M4 o0

4
& <5
£ o R

OF M
SR\ e
2\l
ST

/ 53 Compu'rer- Science CS677: Distributed OS Lecture 3, page 6

5
ERST *

Threads

» Each thread has its own stack, PC, registers
— Share address space, files,...

% Fies

PC
gigabyte
virtual ags
addraas -+ pe
aegs
RERRNNNNES -
m - stacks
regs

o
E’ﬂ :% ;; COmPUTer' Science CS677: Distributed OS Lecture 3, page 7

Why use Threads?

» Large multiprocessors/multi-core systems need many
computing entities (one per CPU or core)

» Switching between processes incurs high overhead

* With threads, an application can avoid per-process
overheads

— Thread creation, deletion, switching cheaper than processes
» Threads have full access to address space (easy sharing)
» Threads can execute 1n parallel on multiprocessors

R/ Compu'rer' Science CS677: Distributed OS Lecture 3, page §

Why Threads?

» Single threaded process. blocking system calls, no
parallelism

» Finite-state machine [event-based]: non-blocking with
parallelism

* Multi-threaded process. blocking system calls with
parallelism

» Threads retain the 1dea of sequential processes with
blocking system calls, and yet achieve parallelism

» Software engineering perspective
— Applications are easier to structure as a collection of threads
 Each thread performs several [mostly independent] tasks

2 \[y) 5 Computer Science CS677: Distributed OS Lecture 3, page 9
O N £

Multi-threaded Clients Example : Web
Browsers

 Browsers such as IE are multi-threaded

* Such browsers can display data before entire document
1s downloaded: performs multiple simultaneous tasks

— Fetch main HTML page, activate separate threads for other
parts

— Each thread sets up a separate connection with the server
 Uses blocking calls

— Each part (gif image) fetched separately and in parallel

— Advantage: connections can be setup to different sources
* Ad server, image server, web server...

QEMAg

< s,

& 7

Sy $\ S
&

M {
& =5 e
5 V? » B
\—'r" ~
2 NV &
7, _«“ &
ST

:
A

Computer Science CS677: Distributed OS Lecture 3, page 10

«[1[YER

Multi-threaded Server Example

» Apache web server: pool of pre-spawned worker threads
— Dispatcher thread waits for requests
— For each request, choose an 1dle worker thread

— Worker thread uses blocking system calls to service web
request

_ Request dispatched
Dispatcher thread to a worker thread Server

\‘\‘ - Worker thread

Request coming in
from the network >

Operating system

& oo B . o
A ‘3%) Computer Science CS677: Distributed OS Lecture 3, page 11

Thread Management

* (Creation and deletion of threads
— Static versus dynamic

* Critical sections
— Synchronization primitives: blocking, spin-lock (busy-wait)
— Condition variables

Global thread variables

* Kernel versus user-level threads

g e) o
7 :% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 3, page 12

User-level versus kernel threads

* Key issues:

* Cost of thread management
— More efficient 1n user space

* Ease of scheduling

 Flexibility: many parallel programming models and
schedulers

* Process blocking — a potential problem

M4 g0

4}
§ & @

OENLLS
(1
i
A

Q', = S
g w B ?r,r
7l % “ », ~
P % /3 “©
7 QA5 &5

Computer Science CS677: Distributed OS Lecture 3, page13

8
4
/1 RS

N/ERST -

User-level Threads

» Threads managed by a threads library

— Kernel 1s unaware of presence of threads

* Advantages:
— No kernel modifications needed to support threads
— Efficient: creation/deletion/switches don’t need system calls
— Flexibility in scheduling: library can use different scheduling
algorithms, can be application dependent
* Disadvantages
— Need to avoid blocking system calls [all threads block]
— Threads compete for one another
— Does not take advantage of multiprocessors [no real parallelism]

QFMAg

< Sq

& @
&

M {
7 3 2
\—'r“ ~
a N\V7 &
ST

:
A

Computer Science CS677: Distributed OS Lecture 3, page 14

41[7“{

User-level threads

Processes

Q Xr;l.n}nah.le

Processors

Figure 6-1: User-space thread implementations

ﬁj Computer Science

CS677: Distributed OS

Lecture 3, page 15

Kernel-level threads

» Kernel aware of the presence of threads

— Better scheduling decisions, more expensive
— Better for multiprocessors, more overheads for uniprocessors

—

Processes Operating Processors
System
- Library Scheduler

SO W .| S

V.. TEes) runnable |
S iliebsniics

W |4 runnable [
R

O 0 _________ @ 0 running |- - 21
o)

N . G .

-
.l 4) runnable

runnable
AR RN

lemy " | &

44> runnable |
|

Figure 6-2: Kernel thread—based implementations

;} \@ /’ . .
| E - S677: Distributed OS Lecture 3, page16
\l§ § Computer Science C istribute

Scheduler Activation

» User-level threads: scheduling both at user and kernel levels
— user thread system call: process blocks
— kernel may context switch thread during important tasks
* Need mechanism for passing information back and forth
* Scheduler activation: OS mechanism for user level threads
— Notifies user-level library of kernel events
— Provides data structures for saving thread context
« Kernel makes up-calls : CPU available, I/O 1s done etc.
» Library informs kernel: create/delete threads

%, Performance of user-level threads with behavior of kernel threads

%\’ j Computer Science Lecture 3, page17
AT \%@

Light-weight Processes

* Several LWPs per heavy-weight process

» User-level threads package
— Create/destroy threads and synchronization primitives

» Multithreaded applications — create multiple threads,
assign threads to LWPs (one-one, many-one, many-many)

 Each LWP, when scheduled, searches for a runnable
thread [two-level scheduling]

— Shared thread table: no kernel support needed

 When a LWP thread block on system call, switch to kernel
mode and OS context switches to another LWP

; Compu‘rer Science CS677: Distributed OS Lecture 3, page 18
b, % £

L WP Example

blocked

blocked

: ; blocked

Processes

") o - b|ocked i’¢q?

blocked &
= blocked =

Operating
System
Scheduler

-....{ 4) runnable

...l 4) runnable |

nun,.i:> n.;nﬁp.

- 4) runnable

Processors

Figure 6-3: Two-level scheduler implementations

4\ Computer Science

CS677: Distributed OS

Lecture 3, page 19

Thread Packages

* Posix Threads (pthreads)
— Widely used threads package
— Conforms to the Posix standard
— Sample calls: pthread create,...
— Typical used in C/C++ applications
— Can be implemented as user-level or kernel-level or via LWPs

e Java Threads

— Native thread support built into the language
— Threads are scheduled by the JVM

QEMAg

< s,

& 7

Sy $ S
&

M {
) =S 2\
<y v*l? > @
\-’r" ~
2 NV &
7, _f &
ST

:
A

Computer Science CS677: Distributed OS Lecture 3, page2(

4’1'76‘}{

