
Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Causality

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!
• If C(A) < C(B), then ??

• Need to maintain causality
– If a -> b then a is casually related to b
– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

21

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Vector Clocks
• Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[I]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1
• Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.
22

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Enforcing Causal Communication

• Figure 6-13. Enforcing causal communication.

23

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global State

• Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

24

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global State (1)

a) A consistent cut
b) An inconsistent cut

25

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

26

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot

• A process finishes when
– It receives a marker on each incoming channel and processes

them all
– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

27

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

28

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state

of the incoming channel

29

Computer Science Lecture 14, page CS677: Distributed OS

Termination Detection

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

30

