
Computer Science Lecture 10, page CS677: Distributed OS

Last Class: RPCs and RMI

• Case Study: Sun RPC 

• Lightweight RPCs 

• Remote Method Invocation (RMI) 
– Design issues

1

Computer Science Lecture 10, page CS677: Distributed OS

Today: Communication Issues

• Message-oriented communication 
– Persistence and synchronicity 

• Stream-oriented communication

2



Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity in Communication 

• General organization of a communication system in which hosts are connected 
through a network

2-20

3

Computer Science Lecture 10, page CS677: Distributed OS

Persistence

• Persistent communication 
– Messages are stored until (next) receiver is ready  
– Examples: email, pony express 

4



Computer Science Lecture 10, page CS677: Distributed OS

Transient Communication

• Transient communication 
– Message is stored only so long as sending/receiving 

application are executing 
– Discard message if it can’t be delivered to next server/receiver 
– Example: transport-level communication services offer 

transient communication 
– Example: Typical network router – discard message if it can’t 

be delivered next router or destination 

5

Computer Science Lecture 10, page CS677: Distributed OS

Synchronicity

• Asynchronous communication 
– Sender continues immediately after it has submitted the message 
– Need a local buffer at the sending host 

• Synchronous communication 
– Sender blocks until message is stored in a local buffer at the 

receiving host or actually delivered to sending 
– Variant: block until receiver processes the message 

• Six combinations of persistence and synchronicity

6



Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

a) Persistent asynchronous communication  (e.g., email) 
b) Persistent synchronous communication

2-22.1

7

Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

c) Transient asynchronous communication (e.g., UDP) 
d) Receipt-based transient synchronous communication

2-22.2

8



Computer Science Lecture 10, page CS677: Distributed OS

Persistence and Synchronicity Combinations

e) Delivery-based transient synchronous communication at message delivery 
(e.g., asynchronous RPC) 

f) Response-based transient synchronous communication (RPC)

9

Computer Science Lecture 10, page CS677: Distributed OS

Message-oriented Transient Communication

• Many distributed systems built on top of simple message-oriented model 
– Example: Berkeley sockets

10



Computer Science Lecture 10, page CS677: Distributed OS

Berkeley Socket Primitives

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

11

Computer Science Lecture 10, page CS677: Distributed OS

Message-Passing Interface (MPI)

• Sockets designed for network communication (e.g., TCP/IP) 
–  Support simple send/receive primitives 

• Abstraction not suitable for other protocols in clusters of 
workstations or massively parallel systems  
– Need an interface with more advanced primitives 

• Large number of incompatible proprietary libraries and protocols 
– Need for a standard interface 

• Message-passing interface (MPI) 
– Hardware independent 
– Designed for parallel applications (uses transient communication) 

• Key idea: communication between groups of processes 
– Each endpoint is a (groupID, processID) pair

12



Computer Science Lecture 10, page CS677: Distributed OS

MPI Primitives
Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

13

CS677: Distributed OSComputer Science Lecture 10, page 

Computing Parable

• The Cow 

• Courtesy: S. Keshav

14



Computer Science Lecture 10, page CS677: Distributed OS

Message-oriented Persistent Communication

• Message queuing systems 
– Support asynchronous persistent communication 
– Intermediate storage for message while sender/receiver are 

inactive 
– Example application: email 

• Communicate by inserting messages in queues 
• Sender is only guaranteed that message will be 

eventually inserted in recipient’s queue 
– No guarantees on when or if the message will be read 
– “Loosely coupled communication”

15

Computer Science Lecture 10, page 

Message-Queuing Model (1)

16



Computer Science Lecture 10, page CS677: Distributed OS

Message-Queuing Model 

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

17

Computer Science Lecture 10, page 

General Architecture of a Message-Queuing 
System (2)

• Queue manager and relays 
– Relays use an overlay network 
– Relays know about the network topology and how to route 

18



Computer Science Lecture 10, page 

Message Brokers

• Message broker: application  level gateway in MQS 
– Convert incoming messages so that they can be understood by 

destination (format conversion) 
– Also used for pub-sub systems

19

Computer Science Lecture 10, page 

IBM’s WebSphere MQ

• Queue managers manage queues 
– Connected through message channels 

• Message channel agent (MCA) 
– Checks queue, wraps into TCP packet, send to receiving MCA

20



Computer Science Lecture 10, page CS677: Distributed OS

Stream Oriented Communication
• Message-oriented communication: request-response 

– When communication occurs and speed do not affect correctness 
• Timing is crucial in certain forms of communication 

– Examples: audio and video (“continuous media”) 
– 30 frames/s video => receive and display a frame every 33ms 

• Characteristics  
– Isochronous communication 

• Data transfers have a maximum bound on end-end delay and 
jitter 

– Push mode: no explicit requests for individual data units beyond 
the first “play” request

21

Computer Science Lecture 10, page CS677: Distributed OS

Examples

Single sender and receiver

One sender 
Multiple receivers

22



Computer Science Lecture 10, page 

Streams and Quality of Service
• Properties for Quality of Service: 
• The required bit rate at which data should be 

transported. 
• The maximum delay until a session has been set up  
• The maximum end-to-end delay . 
• The maximum delay variance, or jitter. 
• The maximum round-trip delay.

23

Computer Science Lecture 10, page CS677: Distributed OS

Quality of Service (QoS)
• Time-dependent and other requirements are specified as quality of service (QoS) 

– Requirements/desired guarantees from the underlying systems 
– Application specifies workload and requests a certain service quality 
– Contract between the application and the system

Characteristics of the Input Service Required

•maximum data unit size (bytes) 
•Token bucket rate (bytes/sec) 
•Toke bucket size (bytes) 
•Maximum transmission rate (bytes/
sec)

•Loss sensitivity (bytes) 
•Loss interval (µsec) 
•Burst loss sensitivity (data units) 
•Minimum delay noticed (µsec) 
•Maximum delay variation (µsec) 
•Quality of guarantee

24



Computer Science Lecture 10, page CS677: Distributed OS

Specifying QoS: Token bucket

• The principle of a token bucket algorithm 
– Parameters (rate r, burst b)  
– Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

25

Computer Science Lecture 10, page CS677: Distributed OS

Enforcing QoS

• Enforce at end-points (e.g., token bucket) 
– No network support needed 

• Mark packets and use router support 
– Differentiated services: expedited & assured forwarding 

• Use buffers at receiver to mask jitter 
• Packet losses 

– Handle using forward error correction  
– Use interleaving to reduce impact 

26



Computer Science Lecture 10, page 

Enforcing QoS (1)

27

Computer Science Lecture 10, page 

Enforcing QoS (2)

• Can also use forward error correction (FEC)

28



Computer Science Lecture 10, page 

HTTP Streaming
• UDP is inherently better suited for streaming 

– Adaptive streaming, specialized streaming protocols 
• Yet, almost all streaming occurs over HTTP (and TCP) 

–  Universal availability of HTTP, no special protocol needed 
• Direct Adaptive Streaming over HTTP (DASH) 

– Intelligence is placed at the client

29

Time

128 kbps
256 kbps

512 kbps

Client

http http http http

Computer Science Lecture 10, page CS677: Distributed OS

Stream synchronization

• Multiple streams: 
– Audio and video; layered video 

• Need to sync prior to playback 
– Timestamp each stream and sync up data units prior to 

playback 
• Sender or receiver? 
• App does low-level sync 

– 30 fps: image every 33ms, lip-sync with audio 
• Use middleware and specify playback rates

30



Computer Science Lecture 10, page 

Synchronization Mechanism

31

Computer Science Lecture 10, page CS677: Distributed OS

Multicasting

• Group communication 
– IP multicast versus application-level multicast 
– Construct an overlay multicast tree rooted at the sender 
– Send packet down each link in the tree 

• Issues: tree construction, dynamic joins and leaves

32



Computer Science Lecture 10, page 

Overlay Construction

33

Computer Science Lecture 10, page CS677: Distributed OS

New Topic: Naming

• Names are used to share resources, uniquely identify 
entities and refer to locations 

• Need to map from name to the entity it refers to 
– E.g., Browser access to www.cnn.com 
– Use name resolution 

• Differences in naming in distributed and non-distributed 
systems 
– Distributed systems: naming systems is itself distributed 

• How to name mobile entities?

34



Computer Science Lecture 10, page CS677: Distributed OS

Example: File Names
• Hierarchical directory structure (DAG) 

– Each file name is a unique path in the DAG  
– Resolution of /home/steen/mbox a traversal of the DAG 

• File names are human-friendly

35

Computer Science Lecture 10, page CS677: Distributed OS

Resolving File Names across Machines
• Remote files are accessed using a node name, path name 
• NFS mount protocol: map a remote node onto local DAG 

– Remote files are accessed using local names! (location independence) 
– OS maintains a mount table with the mappings

36



Computer Science Lecture 10, page CS677: Distributed OS

Name Space Distribution

• Naming in large distributed systems 
– System may be global in scope (e.g., Internet, WWW) 

• Name space is organized hierarchically 
– Single root node (like naming files) 

• Name space is distributed and has three logical layers 
– Global layer: highest level nodes (root and a few children) 

• Represent groups of organizations, rare changes 
– Administrational layer: nodes managed by a single organization 

• Typically one node per department, infrequent changes 
– Managerial layer: actual nodes 

• Frequent changes 
– Zone: part of the name space managed by a separate name server

37

Computer Science Lecture 10, page CS677: Distributed OS

Name Space Distribution Example

• An example partitioning of the DNS name space, including 
Internet-accessible files, into three layers.

38



Computer Science Lecture 10, page CS677: Distributed OS

Name Space Distribution 

• A comparison between name servers for implementing nodes from a large-scale name 
space partitioned into a global layer, as an administrational layer, and a managerial layer. 

• The more stable a layer, the longer are the lookups valid (and can be cached longer)

Item Global Administrational Managerial

Geographical scale of network Worldwide Organization Department

Total number of nodes Few Many Vast numbers

Responsiveness to lookups Seconds Milliseconds Immediate

Update propagation Lazy Immediate Immediate

Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

39


