Last Class: RPCs

» RPCs make distributed computations look like local
computations

* Issues:
— Parameter passing
— Binding
— Failure handling

: W?.%! Computer Science CS677: Distributed OS Lecture 9, page |

Today:

* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

é Compu']'er‘ Science CS677: Distributed OS Lecture 9, page 2

Lightweight RPCs

» Many RPCs occur between client and server on same
machine

— Need to optimize RPCs for this special case => use a
lightweight RPC mechanism (LRPC)

* Server S exports interface to remote procedures
* Client C on same machine imports interface

* OS kernel creates data structures including an argument
stack shared between S and C

J Computer Science CS677: Distributed OS Lecture 9, page 3

Lightweight RPCs

« RPC execution
— Push arguments onto stack
— Trap to kernel
— Kernel changes mem map of client to server address space
— Client thread executes procedure (OS upcall)
— Thread traps to kernel upon completion
— Kernel changes the address space back and returns control to
client

» (Called “doors” in Solaris

J Computer Science CS677: Distributed OS Lecture 9, page 4

Doors

Computer
Client process Server process
server_door(...) €————_
{
aéor_return(...); E—
main
{ 0 main()

fd = open(door_name, ...); .
door_call(fd, ...); Register door | 1d = door_create(...);

fattach(fd, door_name, ...);

i
}

Operating system L %
~ J

Invoke registered door f A
at other process Return to calling process

« Which RPC to use? - run-time bit allows stub to choose between
LRPC and RPC

| Computer Science CS677: Distributed OS Lecture 9, page 5

Other RPC Models

* Asynchronous RPC
— Request-reply behavior often not needed
— Server can reply as soon as request is received and execute procedure later

* Deferred-synchronous RPC
— Use two asynchronous RPCs

— Client needs a reply but can’t wait for it; server sends reply via another
asynchronous RPC

* One-way RPC
— Client does not even wait for an ACK from the server

— Limitation: reliability not guaranteed (Client does not know if procedure
was executed by the server).

omputer Science CS677: Distributed OS Lecture 9, page 6

Asynchronous RPC

Client Wait for result Client Wait for acceptance

< 3 < "

Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time — Server Call local procedure Time —»
and return results

(@) (b)

a) The interconnection between client and server in a traditional RPC

b) The interaction using asynchronous RPC

! lcomputer Science CS677: Distributed 0S Lecture 9, page 7

Deferred Synchronous RPC

e A client and server interacting through two asynchronous RPCs

Wait for Interrupt client
acceptance *

Client

A >
Call remote f&eturn ! Ret
d rom ca eturn
progedure results Acknowledge
Accept
Request request
Server --------------- >
Call local procedure \ Time »
Call client with
one-way RPC

' JlComputer Science CS677: Distributed OS Lecture 9, page 8

Remote Method Invocation (RMI)

* RPCs applied to objects, i.e., instances of a class

— Class: object-oriented abstraction; module with data and
operations

— Separation between interface and implementation

— Interface resides on one machine, implementation on another
« RMIs support system-wide object references

— Parameters can be object references

Computer Science CS677: Distributed OS Lecture 9, page 9

Distributed Objects

Client machine Server machine
Object
Client Server 4 y'd
|« State
Same
Client interface LI Method
invokes » 1 as object
a method
Y A/ Skeleton ‘\\\\\ Interface
E invokes — [|
Proxy same method Skeleton
at object A
Client OS Server OS
. /
L
Network

Marshalled invocation
is passed across network

* When a client binds to a distributed object, load the interface
(“proxy”) into client address space
— Proxy analogous to stubs

Server stub is referred to as a skeleton

Computer Science CS677: Distributed OS Lecture 9, page 10

Proxies and Skeletons

* Proxy: client stub
— Maintains server ID, endpoint, object ID
— Sets up and tears down connection with the server
— [Java:] does serialization of local object parameters
— In practice, can be downloaded/constructed on the fly (why
can’t this be done for RPCs in general?)
* Skeleton: server stub

— Does deserialization and passes parameters to server and sends
result to proxy

Computer Science CS677: Distributed OS Lecture 9, page 11

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)
Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ..,; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

J Computer Science CS677: Distributed OS Lecture 9, page 12

Parameter Passing

* Less restrictive than RPCs.
— Supports system-wide object references
— [Java] pass local objects by value, pass remote objects by reference

Machine A Machine B
Local Local object Remote object
reference L1 o1 Remote 02
[reference R1 B
.’ .\ - \\\
\ T \

Client code with
RMI to server at C

New local |) /
reference Copy of O1 J

(proxy)
Remote] B
invocation with -
L1 and R1 as D‘z Copy of R110 O2
parameters - I~ Server code
Machine C (method implementation)
Computer Science CS677: Distributed OS Lecture 9, page 13

DCE Distributed-Object Mode

Server machine Server machine

Dynamic
(private) object

Dynamic Dynamic
(private) object (private) object

Named (shared)
object

o--}t--——--}-——)

4 \
/ Y Remote \
/ ‘«— reference N
< . ‘e
Client #1 Client #2 Client #3 Client #1 Client#2 Client #3

(a) (b)

a) Distributed dynamic objects in DCE.
b) Distributed named objects

¥ J Computer Science CS677: Distributed OS Lecture 9, page 14

Java RMI

« Server
— Defines interface and implements interface methods
— Server program
 Creates server object and registers object with “remote
object” registry
* Client
— Looks up server in remote object registry
— Uses normal method call syntax for remote methods

* Java tools
— Rmiregistry: server-side name server
— Rmic: uses server interface to create client and server stubs

¥’ § Computer Science CS677: Distributed OS Lecture 9, page 15

Java RMI and Synchronization

 Java supports Monitors: synchronized objects
— Serializes accesses to objects
— How does this work for remote objects?

* Options: block at the client or the server

» Block at server
— Can synchronize across multiple proxies
— Problem: what if the client crashes while blocked?
* Block at proxy
— Need to synchronize clients at different machines
— Explicit distributed locking necessary
 Java uses proxies for blocking
— No protection for simultaneous access from different clients
— Applications need to implement distributed locking

Computer Science CS677: Distributed OS Lecture 9, page 16

