Server Design Issues

Server machine

Client machine A . Server machine
2. Request Register Clierimaching 2. Continue
service i Ll end point service Actual
_ | === & ctua c
Client |« erver Client 4—/’ ser\Lller > serfvaeurefor
™ ™ requested
\ & \h Super- service
1. Ask for = 8\ X 1. Request server
end point | [Daemon [~ End-point service
table
(a) (b)
» Server Design
— Iterative versus concurrent
» How to locate an end-point (port #)?
— Well known port #
— Directory service (port mapper in Unix)
— Super server (inetd in Unix)
| Computer Science CS677: Distributed OS Lecture 7, page 2

Stateful or Stateless?

 Stateful server
— Maintain state of connected clients
— Sessions in web servers

» Stateless server
— No state for clients

* Soft state

— Maintain state for a limited time; discarding state does not
impact correctness

omputer Science CS677: Distributed OS Lecture 7, page 3



Server Clusters

|
Logical switch ! Application/compute servers ! Distributed Logically a
(possibly multiple) | 1 file/database

it
b )
| system single TCP Response Server
' connection
e
.
Client re q ests Request
TEREEL e e e L i
L]

imimE

Server

Web applications use tiered architecture

— Each tier may be optionally replicated; uses a dispatcher
— Use TCP splicing or handoffs

¥ § Computer Science CS677: Distributed OS Lecture 7, page 4

Server Architecture

Sequential
— Serve one request at a time

— Can service multiple requests by employing events and
asynchronous communication

» Concurrent
— Server spawns a process or thread to service each request
— Can also use a pre-spawned pool of threads/processes (apache)

Thus servers could be
— Pure-sequential, event-based, thread-based, process-based

Discussion: which architecture 1s most efficient?

Computer Science CS677: Distributed OS Lecture 7, page 5




Scalability

* Question.:How can you scale the server capacity?
» Buy bigger machine!

* Replicate

* Distribute data and/or algorithms

 Ship code instead of data

« Cache

& W Jcomputer Science CS677: Distributed OS Lecture 7, page 6

Code and Process Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

w‘% Computer Science CS677: Distributed OS Lecture 7, page 7



Motivation

» Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

» Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data
from server to client (e.g., databases)

— Improve parallelism — agent-based web searches

5§ Computer Science CS677: Distributed OS Lecture 7, page 8

Motivation

- Flexibility
— Dynamic configuration of distributed system

— Clients don’t need preinstalled software — download on
demand

2. Client and server

. communicate
Client J Server

——{]

/
. . 1. Client fetches code
Service-specific
client-side code

Code repository

H Computer Science CS677: Distributed OS Lecture 7, page 9



Migration models

Process = code seg + resource seg + execution seg

Weak versus strong mobility
— Weak => transferred program starts from initial state

Sender-initiated versus receiver-initiated
Sender-initiated

— migration initiated by machine where code resides

* Client sending a query to database server
— Client should be pre-registered

Receiver-initiated
— Migration initiated by machine that receives code

— Java applets
— Receiver can be anonymous
§l Computer Science CS677: Distributed OS Lecture 7, page 10

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

§l Computer Science CS677: Distributed OS Lecture 7, page 11



Models for Code Migration

Execute at
Sender-initiated —_ target process
mobility . Execute in

. separate process
Weak mobility

Execute at
Receiver-initiated — target process

mobility “_ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P

mobility
T~ Clone process
Strong mobility

Migrat
Receiver-initiated .— 'grate process

mobility
Clone process

Computer Science CS677: Distributed OS Lecture 7, page 12

Do Resources Migrate?

* Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
« Database, web sites
— Fixed resources
* Local devices, communication end points

2 ‘\‘?- Computer Science CS677: Distributed OS Lecture 7, page 13



Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Actions to be taken with respect to the references to local resources
when migrating code to another machine.

GR: establish global system-wide reference

MV: move the resources

CP: copy the resource

RB: rebind process to locally available resource

omputer Science CS677: Distributed OS Lecture 7, page 14

Migration in Heterogeneous Systems

* Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
Local stack procedure call onto

operations B migration stack
Local
Procedure B / variables B
Return label
(jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr. Identification
}\ from B for proc. B
Local
Parameter variables A
Push procedure values for B aria
call onto program Return label
stack Local stack to caller A
ti A
operations Parameter
Lok;:IaI A values for A
variables
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled

data only)

H Computer Science CS677: Distributed 0S Lecture 7, page 15




Virtual Machine Migration

VMs can be migrates from one physical machine to
another

Migration can be live - no application downtime

[terative copying of memory state

How are network connections handled?

1 §computer Science CS677: Distributed OS Lecture 7, page 16

Case Study: Viruses and Malware

* Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
* Sender-initiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

POt Vi o8
& R,
2

W B

e

2 N\ 5
N &

Computer Science CS677: Distributed OS Lecture 7, page 17



