Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
* Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the time at which they occurred

) Computer Science CS677: Distributed OS Lecture 12, page 15

Event Ordering

* Problem: define a total ordering of all events that occur
n a system

* Events in a single processor machine are totally ordered

* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
* Key idea [Lamport]

— Processes exchange messages

— Message must be sent before received

— Send/receive used to order events (and synchronize clocks)

) Computer Science CS677: Distributed OS Lecture 12, page 16

Happened Before Relation

» If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

« If A represents sending of a message and B is the receipt of this
message, then A -> B
* Relation is transitive:
— A>BandB->C ==A->C
 Relation is undefined across processes that do not exchange
messages

— Partial ordering on events

J Computer Science CS677: Distributed OS Lecture 12, page 17

Event Ordering Using HB

* @Goal: define the notion of time of an event such that
~ If A= B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, = or > C(B)

* Solution:
— Each processor maintains a logical clock LC,

— Whenever an event occurs locally at I, LC,= LC.+1
— When 7 sends message to j, piggyback Lc.

— When j receives message from i
« If LC; < LC; then LC, = LC,; +1 else do nothing

— Claim: this algorithm meets the above goals

J Computer Science CS677: Distributed OS Lecture 12, page 18

Lamport’s Logical Clocks

P P P

: : 2 P4 P> Ps
0 0 0 : ; :
6| m, 8 el 0000 P Bl e
.................. 6 m 8 10
i2[e 2 iR %
i8 o4 m, (30| Fxl s o
------------ B I i8 24l m, |30
oz 62 40 2i @ i
30 40 S0 30 | P2 adjusts | 40 50
36 48 60 36| its clock |48 60
a2 s6[<ms |70 2 et |70
48 64 80 48 69 80
saf< M |72 90 Tof e |77 9%
its clock
(a) (b)
) Computer Science CS677: Distributed OS Lecture 12, page 19

Example: Totally-Ordered Multicasting

» Updating a replicated database and leaving it in an inconsistent
state. -
— only need to order messages (no need to compare local events)

— send every message to all nodes.

% Update1 Update 2 _%

Update 1 is Replicated database Update 2 is
performed before performed before
update 2 update 1

Computer Science CS677: Distributed OS Lecture 12, page 20

Causality

« Lamport’s logical clocks
— If 4-> Bthen C(4) < C(B)
— Reverse is not true!!
* Nothing can be said about events by comparing time-stamps!
» If C(4) < C(B), then ??
* Need to maintain causality
— If a -> b then a is casually related to b
— Causal delivery:1f send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes

— Need a time-stamping mechanism such that:
» If T(4) < T(B) then A should have causally preceded B

J Computer Science CS677: Distributed OS Lecture 12, page 21

Vector Clocks

- Each process i maintains a vector V,

— V.[i] : number of events that have occurred at 1

— V.[j] : number of events I knows have occurred at process]
» Update vector clocks as follows

— Local event: increment V|[I]

— Send a message :piggyback entire vector V

— Receipt of a message: V/k] = max(V,[k],V [k])

* Receiver is told about how many events the sender knows
occurred at another process k&

« Also Vfi] = V[i]+]

» Exercise: prove that if V(4)<V(B), then A causally
precedes B and the other way around.

J Computer Science CS677: Distributed OS Lecture 12, page 22

Enforcing Causal Communication

B Computer Science CS677: Distributed OS Lecture 12, page 23

Global State

* Global state of a distributed system
— Local state of each process
— Messages sent but not received (state of the queues)
* Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection
* Problem: how can you figure out the state of a
distributed system?
— Each process is independent
— No global clock or synchronization

 Distributed snapshot: a consistent global state

B Computer Science CS677: Distributed OS Lecture 12, page 24

Global State (1)

Consistent cut Incon5|stent cut

Tlme —> Time —»

/\ : /\\

m2

Sender of m2 cannot
be identified with this cut

(@) (b)

a) A consistent cut
b) An inconsistent cut

g Computer Science CS677: Distributed OS Lecture 12, page 25

Distributed Snapshot Algorithm

* Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can initiate the algorithm
— Checkpoint local state
— Send marker on every outgoing channel

* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel

7 Computer Science CS677: Distributed OS Lecture 12, page 26

Distributed Snapshot

* A process finishes when

— It receives a marker on each incoming channel and processes
them all

— State: local state plus state of all channels

— Send state to initiator y T

* Any process can initiate snapshot A&
— Multiple snapshots may be in progress C

 Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

) Computer Science CS677: Distributed OS Lecture 12, page 27

Snapshot Algorithm Example

Incoming Qutgoing
message Process State message

I S
Q- [1»

-l Local
filesystem

(a)

a) Organization of a process and channels for a distributed snapshot

> § Computer Science CS677: Distributed OS Lecture 12, page 28

Snapshot Algorithm Example

M—> — > >
E IEI Q ‘MI i IE El Q D » AD'D—D'»'/_—\TF _EH:}"
tj 1 [tj (I
(a][b] [a][b][c][d]
Recorded
state
(b) (c) (d)

b) Process Q receives a marker for the first time and records its local state
C) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel

H Computer Science CS677: Distributed OS Lecture 12, page 29

