Last Class: RPCs and RMI

* Case Study: Sun RPC
* Lightweight RPCs

« Remote Method Invocation (RMI)

— Design issues

5 Computer Science CS677: Distributed OS Lecture 10, page |

Today: Communication Issues

* Message-oriented communication
— Persistence and synchronicity

e Stream-oriented communication

5 Computer Science CS677: Distributed OS Lecture 10, page 2

Persistence and Synchronicity in Communication

Messaging interface

Sending host Communication server Communication server Receiving host

Buffer independent

o Routing of communicating Routin N
Application program hosts prograr?'l Application

A A

4 V/ To other (remote)
LEJ E communication

FMS
server
0s 0s \m 0s T

\os
Local buffer Local network Internetwork . Local buffer
Incoming message

.

—L

]

M1 €—

{111

-«

omputer Science CS677: Distributed OS Lecture 10, page 3

Persistence

 Persistent communication
— Messages are stored until (next) receiver is ready
— Examples: email, pony express

. Post |~ |
Pony and rider office | - »
P v A
Post # Post |
office | ___ " _T____ » | office |
/ A | Post | Ly
Mail stored and sorted, to office | ~._
be sent out depending on destination A

and when pony and rider available

omputer Science CS677: Distributed OS Lecture 10, page 4

Transient Communication

* Transient communication

— Message is stored only so long as sending/receiving
application are executing

— Discard message if it can’t be delivered to next server/receiver

— Example: transport-level communication services offer
transient communication

— Example: Typical network router — discard message if it can’t
be delivered next router or destination

Computer Science CS677: Distributed OS Lecture 10, page 5

Synchronicity

* Asynchronous communication
— Sender continues immediately after it has submitted the message
— Need a local buffer at the sending host

* Synchronous communication

— Sender blocks until message is stored in a local buffer at the
receiving host or actually delivered to sending

— Variant: block until receiver processes the message

» Six combinations of persistence and synchronicity

- Computer Science CS677: Distributed OS Lecture 10, page 6

Persistence and Synchronicity Combinations

A sends message A sends message A stonped
and continues fu E;?Eped and waits until accepted runnirF:g
\& /—‘”JJ—*\ [—

Message is stored
at B's location for

later delivery Time
- —p»
B {—
. B starts and Bis not B starts and
Bis not receives running receives
running message message
) (b)
a) Persistent asynchronous communication (e.g., email)
b) Persistent synchronous communication
Compu’rer‘ Science CS677: Distributed OS Lecture 10, page 7

Persistence and Synchronicity Combinations

A sends message Send request and wait
;ﬂd continues until received
A Message can be A A
sentonly if B is

Time is received Time
B ————— __/ B \u —— — — — — — — ’ »

B receives Running, but doing Process

message something else request

(©) (d)

c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication

omputer Science CS677: Distributed OS Lecture 10, page 8

Persistence and Synchronicity Combinations

Send request and wait until Send request
accepted and wait for reply
A y ~ A
________________ A g
Request Request Accepted
is received Accepted _ is received _
Time Time
—» -
B — —— B . H‘,:‘__ﬂﬂ\%\/__/d ____________
Running, but doing Process Running, but doing Process
something else request something else request
(e) ®

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f) Response-based transient synchronous communication (RPC)

Compu‘rer Science CS677: Distributed OS Lecture 10, page 9

Message-oriented Transient Communication

* Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server A T
[socket - bind 3 listen -] ac?pt}—\ﬁ r:ad o write

|
| t \
. . . | ' . . v
Synchronization point — ! Communication

|
| ! \

Y ! A
socket WconnectH» write ——» read close |
Client

Compu*rer Science CS677: Distributed OS Lecture 10, page10

Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
omputer Science CS677: Distributed OS Lecture 10, page11]

Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

» Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems

— Need an interface with more advanced primitives
* Large number of incompatible proprietary libraries and protocols
— Need for a standard interface
* Message-passing interface (MPI)
— Hardware independent
— Designed for parallel applications (uses transient communication)
« Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair

omputer Science CS677: Distributed OS Lecture 10, page12

MPI Primitives

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Computer Science CS677: Distributed OS Lecture 10, page13

Message-oriented Persistent Communication

* Message queuing systems
— Support asynchronous persistent communication

— Intermediate storage for message while sender/receiver are
inactive

— Example application: email
« Communicate by inserting messages in queues

» Sender is only guaranteed that message will be
eventually inserted in recipient’s queue
— No guarantees on when or if the message will be read
— “Loosely coupled communication”

Computer Science CS677: Distributed OS Lecture 10, page14

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

<[<«
[T <

<[
[

| ! 1
1 ! 1
1 ! 1
| ! 1
1 ! 1
I | 1

Receiver Receiver Receiver Receiver
running passive running passive
(a) (b) (c) (d)
Computer Science Lecture 10, page15

Message-Queuing Model

Look-up
Sender | | transport-level Receiver
address of queue

Queuing b!,@ Queus.level ///E Queuing
layer < layer

_ address 1
Local OS ‘ Address look-up Local OS T\
database
k Transport-level
address
Network

Primitive Meaning
Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.

Compu*rer Science CS677: Distributed OS Lecture 10, page16

General Architecture of a Message-Queuing
System (2)

Sender A

Application
Application

lReceive
&F?Lﬁ\ R2 E;—}j
Message | [T
-\ B[
Send queue / :

[[T [«
. Application
[
R \ T A
Sl s m«j
y Ui < . Ii Receiver B

Application
Router

* Queue manager and relays

— Relays use an overlay network
— Relays know about the network topology and how to route

Lecture 10, page17

Computer Science

Message Brokers

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ / /
\ I [

\
Broker
program [€%>
/1 \A
- HQueuing

EN CEER:EEE

0s i 0s

= - J |1 J |

Network

111

* Message broker: application level gateway in MQS
— Convert incoming messages so that they can be understood by
destination (format conversion)
— Also used for pub-sub systems

Lecture 10, page18

3 Compu’rer‘ Science

IBM’s WebSphere MQ

Client's receive

Sending client Routing table Send queue queue Receiving client
\ i
\ /
Queue Queue
Program manager manager Program
MQ Interface m/ M/
‘EF L
Server Server
Stub stub | [MCA/[MCA MCA MCA | “stup Stub
Y N A T
\) A\ \ ;J
RPC Local network .
Enterprise network
(ynchronous) To other remote
Message passing queue managers
(asynchronous)

* Queue managers manage queues
— Connected through message channels

* Message channel agent (MCA)
— Checks queue, wraps into TCP packet, send to receiving MCA

Computer Science Lecture 10, page19

Stream Oriented Communication

* Message-oriented communication: request-response
— When communication occurs and speed do not affect correctness

* Timing is crucial in certain forms of communication
— Examples: audio and video (“continuous media”)
— 30 frames/s video => receive and display a frame every 33ms

* Characteristics
— Isochronous communication
* Data transfers have a maximum bound on end-end delay and
jitter
— Push mode: no explicit requests for individual data units beyond
the first “play” request

Compu‘l’er‘ Science CS677: Distributed OS Lecture 10, page20

Examples

Camera
H:‘:'ﬂ Display
L_\ os ztream oS f—_}
L 1l .
Notwork Single sender and receiver
(b)
Stream > Sink
A

) Intermediate

node, possibly
Source) with filters

One sender

>

Multiple receivers

P

Lower bandwidth

g Computer Science CS677: Distributed OS

Lecture 10, page21

Streams and Quality of Service

 Properties for Quality of Service:

transported.
* The maximum end-to-end delay .

* The maximum round-trip delay.

Computer Science

The required bit rate at which data should be

The maximum delay until a session has been set up

The maximum delay variance, or jitter.

Lecture 10, page22

Quality of Service (QoS)

» Time-dependent and other requirements are specified as quality of service (QoS)
— Requirements/desired guarantees from the underlying systems

— Application specifies workload and requests a certain service quality

— Contract between the application and the system

Characteristics of the Input

Service Required

emaximum data unit size (bytes)
eToken bucket rate (bytes/sec)
eToke bucket size (bytes)
eMaximum transmission rate (bytes/

eLoss sensitivity (bytes)

eLoss interval (usec)

*Burst loss sensitivity (data units)
eMinimum delay noticed (usec)

sec) «Maximum delay variation (usec)
*Quality of guarantee
omputer Science CS677: Distributed OS Lecture 10, page23

Specifying QoS: Token bucket

[1

Application _‘:H%

of data units

» The principle of a token bucket algorithm
— Parameters (rate r, burst b)

v

Irregular stream One token is added

to the bucket every AT
- e e

Regular stream

— Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

omputer Science CS677: Distributed OS Lecture 10, page24

