Today: More Canonical Problems

- Distributed Snapshots
- Termination Detection
- Leader election
- Mutual exclusion

Global State

- Global state of a distributed system
 - Local state of each process
 - Messages sent but not received (state of the queues)
- Many applications need to know the state of the system
 - Failure recovery, distributed deadlock detection
- Problem: how can you figure out the state of a distributed system?
 - Each process is independent
 - No global clock or synchronization
- Distributed snapshot: a consistent global state
Global State (1)

(a) A consistent cut
(b) An inconsistent cut

Distributed Snapshot Algorithm

- Assume each process communicates with another process using unidirectional point-to-point channels (e.g., TCP connections)
- Any process can initiate the algorithm
 - Checkpoint local state
 - Send marker on every outgoing channel
- On receiving a marker
 - Checkpoint state if first marker and send marker on outgoing channels, save messages on all other channels until:
 - Subsequent marker on a channel: stop saving state for that channel
Distributed Snapshot

- A process finishes when
 - It receives a marker on each incoming channel and processes them all
 - State: local state plus state of all channels
 - Send state to initiator
- Any process can initiate snapshot
 - Multiple snapshots may be in progress
 - Each is separate, and each is distinguished by tagging the marker with the initiator ID (and sequence number)

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot
Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming messages
d) Q receives a marker for its incoming channel and finishes recording the state of the incoming channel

Termination Detection

- Detecting the end of a distributed computation
- Notation: let sender be *predecessor*, receiver be *successor*
- Two types of markers: Done and Continue
- After finishing its part of the snapshot, process Q sends a Done or a Continue to its predecessor
- Send a Done only when
 - All of Q’s successors send a Done
 - Q has not received any message since it check-pointed its local state and received a marker on all incoming channels
 - Else send a Continue
- Computation has terminated if the initiator receives Done messages from everyone
Election Algorithms

• Many distributed algorithms need one process to act as coordinator
 – Doesn’t matter which process does the job, just need to pick one
• Election algorithms: technique to pick a unique coordinator (aka leader election)
• Examples: take over the role of a failed process, pick a master in Berkeley clock synchronization algorithm
• Types of election algorithms: Bully and Ring algorithms

Bully Algorithm

• Each process has a unique numerical ID
• Processes know the IDs and address of every other process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered from failure or if coordinator failed
• 3 message types: election, OK, I won
• Several processes can initiate an election simultaneously
 – Need consistent result
• $O(n^2)$ messages required with n processes
Bully Algorithm Details

- Any process P can initiate an election
- P sends *Election* messages to all processes with higher IDs and awaits *OK* messages
- If no *OK* messages, P becomes coordinator and sends *I won* messages to all processes with lower IDs
- If it receives an *OK*, it drops out and waits for an *I won*
- If a process receives an *Election* msg, it returns an *OK* and starts an election
- If a process receives an *I won*, it treats sender as a coordinator

Bully Algorithm Example

- The bully election algorithm
- Process 4 holds an election
- Process 5 and 6 respond, telling 4 to stop
- Now 5 and 6 each hold an election
Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

Ring-based Election

- Processes have unique IDs and arranged in a logical ring
- Each process knows its neighbors
 - Select process with highest ID
- Begin election if just recovered or coordinator has failed
- Send Election to closest downstream node that is alive
 - Sequentially poll each successor until a live node is found
- Each process tags its ID on the message
- Initiator picks node with highest ID and sends a coordinator message
- Multiple elections can be in progress
 - Wastes network bandwidth but does no harm
A Ring Algorithm

Comparison

- Assume n processes and one election in progress

- Bully algorithm
 - Worst case: initiator is node with lowest ID
 - Triggers $n-2$ elections at higher ranked nodes: $O(n^2)$ msgs
 - Best case: immediate election: $n-2$ messages

- Ring
 - 2 ($n-1$) messages always
Elections in Wireless Environments (1)

- Election algorithm in a wireless network, with node a as the source. (a) Initial network. (b)–(e) The build-tree phase.
Elections in Large-Scale Systems

• Requirements for superpeer selection:
 1. Normal nodes should have low-latency access to superpeers.
 2. Superpeers should be evenly distributed across the overlay network.
 3. There should be a predefined portion of superpeers relative to the total number of nodes in the overlay network.
 4. Each superpeer should not need to serve more than a fixed number of normal nodes.

Elections in Large-Scale Systems (2)

• Moving tokens in a two-dimensional space using repulsion forces.
Distributed Synchronization

- Distributed system with multiple processes may need to share data or access shared data structures
 - Use critical sections with mutual exclusion
- Single process with multiple threads
 - Semaphores, locks, monitors
- How do you do this for multiple processes in a distributed system?
 - Processes may be running on different machines
- Solution: lock mechanism for a distributed environment
 - Can be centralized or distributed

Centralized Mutual Exclusion

- Assume processes are numbered
- One process is elected coordinator (highest ID process)
- Every process needs to check with coordinator before entering the critical section
- To obtain exclusive access: send request, await reply
- To release: send release message
- Coordinator:
 - Receive request: if available and queue empty, send grant; if not, queue request
 - Receive release: remove next request from queue and send grant
Mutual Exclusion: A Centralized Algorithm

(a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted.
(b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.
(c) When process 1 exits the critical region, it tells the coordinator, who then replies to 2.

Properties

- Simulates centralized lock using blocking calls
- Fair: requests are granted the lock in the order they were received
- Simple: three messages per use of a critical section (request, grant, release)
- Shortcomings:
 - Single point of failure
 - How do you detect a dead coordinator?
 - A process can not distinguish between “lock in use” from a dead coordinator
 - No response from coordinator in either case
 - Performance bottleneck in large distributed systems
Decentralized Algorithm

- Use voting
- Assume n replicas and a coordinator per replica
- To acquire lock, need majority vote \(m > n/2 \) coordinators
 - Non blocking: coordinators returns OK or “no”
- Coordinator crash \(\Rightarrow \) forgets previous votes
 - Probability that k coordinators crash \(P(k) = \binom{m}{k} p^k (1-p)^{m-k} \)
 - Atleast \(2m-n \) need to reset to violate correctness
 - \(\sum_{2m-n} \binom{n}{k} p^k \)

Distributed Algorithm

- [Ricart and Agrawala]: needs 2(n-1) messages
- Based on event ordering and time stamps
 - Assumes total ordering of events in the system (Lamport’s clock)
- Process \(k \) enters critical section as follows
 - Generate new time stamp \(TS_k = TS_k + 1 \)
 - Send request\((k, TS_k)\) all other \(n-1 \) processes
 - Wait until reply\((j)\) received from all other processes
 - Enter critical section
- Upon receiving a request message, process \(j \)
 - Sends reply if no contention
 - If already in critical section, does not reply, queue request
 - If wants to enter, compare \(TS_j \) with \(TS_k \) and send reply if \(TS_k < TS_j \), else queue
A Distributed Algorithm

a) Two processes want to enter the same critical region at the same moment.
b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the critical region.

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions
 – Any overloaded process can become a bottleneck
A Token Ring Algorithm

(a)

(b)

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

- Use a token to arbitrate access to critical section
- Must wait for token before entering CS
- Pass the token to neighbor once done or if not interested
- Detecting token loss in non-trivial

Comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Messages per entry/exit</th>
<th>Delay before entry (in message times)</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized</td>
<td>3</td>
<td>2</td>
<td>Coordinator crash</td>
</tr>
<tr>
<td>Decentralized</td>
<td>3mk</td>
<td>2m</td>
<td>starvation</td>
</tr>
<tr>
<td>Distributed</td>
<td>$2(n-1)$</td>
<td>$2(n-1)$</td>
<td>Crash of any process</td>
</tr>
<tr>
<td>Token ring</td>
<td>1 to ∞</td>
<td>0 to $n-1$</td>
<td>Lost token, process crash</td>
</tr>
</tbody>
</table>

- A comparison of four mutual exclusion algorithms.