
CMPSCI 677 Operating Systems Spring 2013

Lecture 23: April 24
Lecturer: Prashant Shenoy Scribe: Steve Li

23.1 Distributed file system

A Distributed file system is a system that allows a machine to access files on another machine. There are
two canonical accessing models for distributed file systems:

Remote access model
All read/write requests to a file are processed on the server.

Upload/download model
When a client opens a file, a copy of the file is transferred (downloaded) to the client. All the subsequent
read/write operations are done on the local machine. Once the file is closed, the result will be sent
back (uploaded) to the server.

Consistency is simpler to achieve in the remote access model than in the upload/download model, because
in the former model all the requests are handled on the server, which ensures consistency is attained. As for
the upload/download model, there might be multiple clients opening the same file simultaneously. Keeping
multiple copies of the same file on different machines makes consistency more challenging.

Distributed file system server can be categorized into two types: stateless server and stateful server. A
stateful server keeps information such as which client is currently accessing a file and which file is opened on
the server side; while a stateless server keeps no information with that regard.

23.2 Network file system

Network File System (NFS) is a distributed file system protocol developed by Sun. In the case the file being
accessed is local, the file accessing mechanism on an NFS machine sends a request to the local file system
interface to access the local storage. On the other hand, if the file is sitting on the remote machine, a request
will be sent to the NFS client, which in turn makes an RPC call to the NFS server. Once the NFS server
received the RPC call it will access the local file system and send the results back to the client. As a matter
of fact, RPC was invented by Sun for implementing NFS.

Currently, the NFS versions still in use are version 3 and version 4. NFS version 3 follows a stateless server
design, whereas version 4 is a stateful server design. NFS protocol defines several file accessing operations.
Some of the operations are not supported by both version 3 and version 4. For example, there is no “open”
operation in NFS version 3, which is stateless, meaning that servers do not need to keep track of file open
states of individual clients.

In particular, opening a file in NFS version 3 is translated into a lookup operation to check if the specified
file exists and the client has sufficient permission to access the file. Followed by a lookup, subsequent read
requests will then be sent to the server in order to read data. For reading data in NFS version 4, the server
only needs to keep track of which client is opening which file. As a result, clients can group three operations

23-1



23-2 Lecture 23: April 24

lookup, open, read together as one compound RPC request. This decreases overall RPC latency and leads
to faster, performance optimized file accessing.

23.2.1 Mount protocol

Mount protocol establishes a mapping of a file system subtree on the server to local file hierarchy of the
client.

Notice that NFS version 3 does not support transitive exports. For instance, say server B exports a subtree
T1 to server A, and server A exports a subtree T2 that contains T1 to some client. For security reason, the
client is not allows to directly access T1.

Mount can be performed on demand instead of at the boot time. In particular, when user tries to access an
NFS directory, it will be mounted automatically – this is called automounting.

23.2.2 Consistency and caching

There are several types of file sharing semantics. UNIX semantics means that each operation is performed
immediately and is guaranteed to be visible to all processes accessing that file. UNIX semantics are expected
When operations are done locally.

NFS provides weaker semantics because of consistency reasons. When a process A writes to a file on the
server, and a process B on another machine reads that file right after that, what process B reads is not
guaranteed to include the change made by A because the modification might be cached locally at A and not
yet updated with the server.

NFS protocol does not specify consistency requirements but leave it to the implementation. In the current
implementation, clients synchronize changes with server every 30 seconds.

23.2.3 File locking

OS allows processes acquire locks when accessing files to prevent multiple processes from writing to a file at
the same time. For instance, the inbox file in UNIX is protected with file lock. Because NFS version 3 is
stateless, file locking is not supported. On the other hand, NFS version 4 is stateful and it allows client lock
a file or even just a part of the file (a range of bytes in the file).

23.2.4 Delegation

Delegation is the act of transferring responsibility over an object (e.g.: a file), which is tightly related to
the idea of transferring files in the download/upload access model. NFS by default only supports remote
server mode in version 3. Delegation was introduced from version 4. When a client asks for a file, the server
transfers a copy of the file to the client, called master copy, and all the subsequent changes are made locally
and therefore no RPC requests are sent since then until the client closes the file.

If multiple processes from different machines want to access the same file, the server can recall delegation
by asking the delegated client send the master copy back and the server then switch to remote access mode.
NFS version 4 supports both remote access mode and upload/download mode.

As we can see, delegation impacts scalability. On the one hand, delegation aims at optimizing performance.



Lecture 23: April 24 23-3

On the other hand, being stateful hurts performance and scalability. In general, NFS version 4 is less scalable,
not for its stateful design but because it supports a much richer set of features that complicate the entire
system.

23.2.5 RPC failures

Original NFS runs on UDP, while more recent versions of NFS run on TCP and hence deal with packet
losses at the TCP level (although it is still possible to set it to work over UDP).

To use UDP, NFS has to handle potential packet loss by itself. It is common to use a time-out to determine
if a packet is lost or not. Say if an NFS client does not receive the response from the server within a period
of time, it will then re-issue the request. To guarantee correctness, operations have to be idempotent, that
is, repeating an operation multiple times will result in the same outcome as being done exactly once.

To achieve this, all the requests are logged when processed and the results are cached. Once a request comes
in, the server checks the log if the request has already been processed. If that is the case, the server simply
returns the cached output. By doing so, exactly once semantic is provided.

23.3 Coda

Coda is a distributed file system developed as a research project at CMU. It was designed for mobile clients
that disconnect as their machines move. To make disconnects transparent, each client keep a copy of remote
files once connecting to the server. When disconnected, clients can work on the local copy without accessing
to server. Once connecting back to the server, clients synchronize the updated contents with the server and
download new files on the server to its cache.

Notice that not all files on the server are cached. Usually, the system would guess which files the user
might be more interested in and cache only those subset. To maintain consistency, a mechanism called
version vector is used: every update to a file will increment the corresponding entry of the version vector.
By comparing version vector, server/clients can figure out which files are most up-to-date. However, when
write-write conflict happens, users are responsible to resolve the conflict similar to the situation using source
code control systems.

Clients basically transit among the following three states:

Hoarding client is connected and actively downloads files from the server and keep a cache on local machine

Emulation client disconnects but acts like it is connected by working on the cached contents

Reintegration client/server compare version vector and synchronize with each other. Client stays in rein-
tegration state until synchronization is complete and then transitions to hoarding state (if connected)

23.4 XFS

XFS is a serverless file system that is similar to a P2P file system. Every machine involved in xFS can
become server to some files and also client to some other files.

XFS uses the storage technology called RAID (redundant array of independent disks) to spread data on
multiple disks.



23-4 Lecture 23: April 24

23.4.1 RAID

The basic idea of RAID is file striping: each file is partitioned into multiple pieces and each of them is stored
on different disk. The advantage of file striping includes the gain of parallelism. When accessing a file, all the
pieces of that single file on different disks can be accessed in parallel, which could result in linear speedup.
In addition, automatic load balance comes for free because popular files are distributed across multiple disks
and therefore no single disk will be overloaded.

However, file striping comes with disadvantages: when a disk fails, all the files with a part on the disk will
be gone. Assuming independent fails, the mean time to failure drops significantly as the number of disks
increases. Therefore, redundancy must be added to make the system usable in practice.

23.4.1.1 RAID 1

RAID level 1 is simply mirroring: every primary disk comes with a corresponding secondary disk, and each
write will send to both disks so they will have identical content. The main drawback is that RAID 1 is costly
(in terms of hardware and cost to keep consistency) due to its high redundancy.

23.4.1.2 RAID 4 and RAID 5

RAID 4 introduces a smarter redundancy mechanism that involves a parity block for each striped file.

For example, the parity of striped blocks D0, D1, D2, D3 is computed by p = D0 ⊗D1 ⊗D2 ⊗D3 where ⊗
denotes XOR operation. Using the property a⊗ b = c⇒ c⊗ a = b, c⊗ b = a, if one partition, say D0, fails,
it can be recovered by D0 = D1 ⊗D2 ⊗D3 ⊗ p.

In RAID 4, all parity blocks are stored on the same dedicated disk. As a result, the parity disk becomes
a bottleneck because every write will goes to the parity disk. To fix this, RAID 5 distributes parity blocks
evenly to all the disks.

XFS uses RAID to distribute contents on multiple machines to achieve parallelism and load balance.


