
CMPSCI 677 Operating Systems Spring 2013

Lecture 9: February 20
Lecturer: Prashant Shenoy Scribe: Siddharth Gupta

9.1 Failure Semantics

Failures should be taken into consideration when RPC calls are made. Failures can be due to client or server
crash or data transmission loss in the network, thus we need to have predictable behavior in scenarios where
such failures can occur. There should be mechanisms to figure out the cause of failures and the steps to be
taken to overcome them.

• If the client is unable to find the server, then the client should return an error message.

• If client and server both are running but something goes wrong on the network and RPC request
packet doesn’t reach the server for processing or the server sent the reply back to client but client
never received the reply. To handle this scenario the client should implement a timeout mechanism. If
the client doesn’t receive response from server before the timeout then client should resend the RPC
request.

• Another approach of averting failures is by offloading the error correction task to the TCP layer, since
TCP provides abstraction where the packet losses are dealt by the transport layer. Thus any packet
that is sent will arrive at the other end eventually.

• If the RPC system is running over UDP, then timeout mechanism needs to be in place since UDP
doesn’t implement any error correction or handles packet losses in the network.

• If UDP is used to transfer data, before making a request to a stateful server one need to check if the
RPC calls are idempotent, i.e. re-executing the calls on the server shouldn’t cause errors.

9.1.1 Server Failure Semantics

There can be scenarios where the server crashes while it is executing the RPC call, thus client should be
aware of what was the state of the server before it crashed, so that it will know what action to take when
the server comes up. This can be handled by different semantics provided by the RPC system.

• At least once semantics, denotes that if the client received a reply from the server, it means that call
has been executed at least once on the server. It may be possible server executed the call and then
crashed before sending the reply, it then comes up and then again executes the call and sends the reply
to the client.

• At most once semantics, if the client gets a reply from the server, it means that the RPC call have
been executed at most once on the server.

• Exactly once semantics, this is the most desirable scenario, no matter what happened on the server
side (crashes / restarts), if the client gets back reply exactly once, then it is confirmed that the RPC
call was executed exactly once on the server.

9-1



9-2 Lecture 9: February 20

Exactly once semantics are difficult to implement and systems generally implement weaker semantics
and thus the error handling needs to be taken care explicitly.

9.1.2 Client Failure Semantics

There can be failures scenarios at the client side too. For example, client made a RPC request, but before the
client received the response from the server, it crashed, in this case server will need to know the corrective
action in order to maintain system sanity. Thus there are failure semantics provided by the RPC system to
handle such scenarios.

• I f server executed a RPC call, but mean while the client crashed and is not available to receive the
response, then most servers will discard the response

• If server was executing a long running RPC computation and in between the execution it comes to
know that client has crashed then such calls are called Orphan RPC calls. In this scenario server can
do one of the following

– Extermination - when the server gets to know that client has crashed, it can terminate the on-
going RPC computation. This will incur an overhead on server side to maintain list of clients and
their current state.

– Reincarnation - In order to minimize the overhead, the server can check for long running RPC
calls within certain periodic time intervals. If it finds that a certain RPC call has been running for
a long duration, then it goes and checks for the client state, if the client has crashed then server
can delete the computation. Thus server doesn’t need to keep state of every client connected to
it.

– Gentle Reincarnation - If the client that made the request has crashed, then server can broadcast
and check if the client restarted with a different process id and then try to deliver the RPC
response to it.

– Expiration - Every time a RPC computation starts, the server gives it a timeout, once the timeout
happens it checks if the client is still alive, and if it is then it continues computation with another
timeout, this process recursively goes on until the response is sent back to the client.

9.1.3 Implementation Issues

RPC on LAN using UDP works fine because the transmission losses are less and data packets don’t get
lost in the network, but it won’t pan out well when sent over WAN since routers gets congested and packet
dropping etc might disrupt the RPCs. TCP works out to be a better way to send packets over WAN because
packet drops, error correction everything is handled by TCP. Thus a RPC programmer has to choose which
protocol he/she wants to implement for RPC.

There is a lot of overhead in sending the RPC message over the network, when a RPC call is made, the
call goes from the client into the stub, in the stub the parameters are copied and then a message is formed
to send it to the server, the message is then handed to the kernel which then is copied on to the NIC card
and sent over the medium, similar process is done at the server side. Thus we see that lot of copies of the
message are made which can contribute to overhead, specially when there are lot of message with fairly large
number of arguments.



Lecture 9: February 20 9-3

9.1.4 Case Study : SUNRPC

To implement NFS, SUN Microsystems choose to use RPCs rather than doing socket communication between
the client machine and the File Server. Thus they built an RPC layer and implemented NFS on top of it.
They realized that the RPC layer was more generic, therefore other applications could be written using the
same RPC abstraction, thus they made tools like RPC compilers available to programmers. This system
was initially built on top of UDP since it was designed to work on LAN, but now-a-days it can work both
on UDP and TCP which depends on the discretion of the programmer and application it is designed for.
To implement Marshaling and Un-marshaling SUN came up with XDR (eXternal Data Representation), i.e.
any packets that are sent out with arguments is converted to XDR format and sent as a message. SUNRPC
provides At-least once semantics and thus not a preferred way, and calls need to be idempotent to avoid
redundancies.

9.1.5 Lightweight RPCs

These occur when client and server processes both run on the same machine. In this scenario, the overhead
of constructing a message is reduced as the communication is on the same machine and message need not
be sent over a network. Thus rather than sending an explicit network message the client just passes a buffer
from client to the server, essentially there is a shared memory region where client puts in the RPC request
and the parameters and tells the server to access it from that.

The client pushes the arguments onto the stack, trap to the kernel, the kernel in turn just takes the memory
region where arguments were pushed in the stack and change the memory map of the client so that that
memory region now becomes available to the server. The server then takes in this request from the memory
region and processes it, thus here we see that just a shared memory was passed to the server instead of
sending the message over network. Once the execution on server side finishes the reply is sent back to the
client in a similar fashion.

All of the above is handled by the RPC runtime system, it can decide whether to send a message over TCP
or using shared buffers.

9.1.6 Other RPC Models

• Synchronous RPC - Synchronous call are generally blocking calls, i.e. when a client has made a request
to the server, the client will wait / block until it receives a response from the server.

• Asynchronous RPC - Client makes a RPC call and it waits only till it receives an acknowledgement
from the server and not the actual response. The server then processes the request asynchronously and
send back the response asynchronously to the client which generates an interrupt on the client to read
response received from the server. This is useful when the RPC call is a long running computation on
the server, meanwhile client can move on with its computations.

• Deferred Synchronous RPC - The client sends a RPC request to the server, and client waits only for
acknowledgement of received request from server, post that the client carries on with its computation.
Once the server processes the request, it sends back the response to the client which generates an
interrupt on client side, the client then sends an response received acknowledgement to the server.

• One-Way RPC - The client sends an RPC request and doesn’t wait for an acknowledgement from the
server, it just sends an RPC request and continues with its computation. The reply from the server is
handled through interrupt generated on receipt of response on client side. The downside here is that



9-4 Lecture 9: February 20

this model is not reliable if it is running on non-reliable transport medium such as UDP, there will be
no way to know if the request was received by the server.

9.2 Remote Method Invocation (RMI)

RMI is when the abstraction of RPC is applied to objects in Object Oriented World. Applications are
written as classes and the classes are instantiated as objects during runtime, application can be distributed,
thus some objects may run at client side and some on the server. Method in object 1 to invoke a method
that is exported by object 2. Thus if the method belonging to that class resides on a different server then a
remote method call will be sent to that server. The objects that reside on the local machine are called local
objects, objects which are present on other machines are called remote objects, collectively these are called
distributed objects.

One major difference between Java RMI’s and RPCs is that RMI’s support system wide object references,
i.e. they allow references to objects system wide, thus this enables passing of arguments by reference. In
RPCs this can’t be done. In Java RMI’s arrays or other data structures can’t be passed as reference but
objects can be passed as reference. However, array can be a member variable of a object and that object
can be passed as reference in RMI call. Passing by reference reduces the complexity from users perspective
but increases the runtime complexity of the system as the system needs to figure out the system wide global
reference corresponding to the passed object.

9.2.1 DCE Distributed-object Model

In this system, the client server application is implemented using private objects. Whenever a request comes
in to the server, the server creates a new object to service that request. This can be thought of as an
equivalent of spewing a new thread to process new request. This is a transient model, the object is destroyed
once the request is serviced by it. Thus one conclusion is that state cannot be included in this server, it will
be a stateless server, as the object gets destroyed once the request is serviced. This implementations is not
available in Java.

If the state has to be kept in this kind of model, it will require Shared Objects. Shared objects are persistent,
these get created when server starts up and stays for the lifetime of the server.

Thus while making a RMI call, the programmer can state whether the call has to goto private objects or
shared objects. The shared objects can run on multiple threads which execute different methods of those
objects.

9.2.2 JAVA RMI

• At the server side an interface is defined, i.e. it is the set of methods that the server is exporting to any
client which wishes to make RMI calls. For each method exposed by interface, there has to be separate
implementation written for it. Thus there is a separation between interface and implementation. The
interface is exported and registered with the server. Once the server starts up, the remote object is
registered with the ”remote object” registry which is similar to directory service.

• When the client starts up it has to look up the remote object registry to find where a particular remote
object resides.

• Rmiregistry is the server-side name server.



Lecture 9: February 20 9-5

9.2.3 JAVA RMI and Synchronization

When there are objects distributed across machines, then problem of synchronization become more evident.
In a multi threaded java program, locks and monitors are implemented to get synchronization. Now if the
program is distributed over machines it becomes a challenge to implement locking but still it needs to be
done to attain synchronization. The locking functionality can be implemented at the client end or the server
end.

• Implement lock at the server end, when multiple request from client come in, the access to the shared
object on server needs to be synchronized. Essentially, a new request tries to grab a lock on the object,
which the current request is processed, other request are queued and processed sequentially when the
lock is released.

• Implement lock at the client end, each client will have locking mechanism and they will coordinate the
synchronization. A client will have to wait for a lock on the object, if another client has locked on that
resource, this essentially becomes distributed lock.

9.3 Message-oriented Transient Communication

When a server and client want to communicate, each has to instantiate a socket and then connect the sockets
together.

• At server end, after a socket is instantiated it is bound to a port number using bind call. Then server
implements listen call which listens for any requests on that port. When a new request comes in,accept
call is made to accept the request from the client. Until the client tries to connect to the server, accept
implements a blocking call.

• At the client end, after the socket is instantiated, it uses connect call to connect to a specified server.

• Once the connection is established between client and server, read and write calls maybe used to read
and write data from and to the socket. Sockets are duplex, they support both read and write calls.

• At the end of communication, close call can be used to close to socket and hence the communication
between client and server.

9.3.1 Message-Passing Interface (MPI)

MPI is a middleware which is implemented for high performance communication such as astronomical compu-
tations etc. It can give better abstraction and lower overheads as compared to TCP / IP. It is generally used
in a cluster of servers. It is designed for parallel applications or transient communication. MPI Primitives
provides abstraction for both synchronous and asynchronous communications.

Some examples of MPI Primitives:-

• MPI bsend is equivalent to a One Way RPC, the machine sends the message and doesn’t even wait for
the message to reach the other end.

• MPI send and MPI send are equivalent to asynchronous RPCs, the machine waits for the message to
be received at the other end and then continue execution.



9-6 Lecture 9: February 20

• MPI sendrecv is equivalent to Synchronous RPC, the machine waits for the request to be process and
once it receives the repines, it continues execution.


