
Multimedia Streaming

Mike Zink

Technical Challenges
•  Servers (and proxy caches)

–  storage
•  continuous media streams, e.g.:

–  4000 movies * 90 minutes * 10 Mbps (DVD) = 27.0 TB  
 15 Mbps = 40.5 TB 
 36 Mbps (BluRay)= 97.2 TB 

–  2000 CDs * 74 minutes * 1.4 Mbps = 1.4 TB

Technical Challenges
•  Servers (and proxy caches)

–  I/O
•  many concurrent clients
•  real-time retrieval
•  continuous playout

–  DVD (~4Mbps, max 10.08Mbps)
–  HDTV (~15Mbps, BlueRay ~36Mbps)

•  current examples of capabilities
–  disks:

»  mechanical: e.g., Seagate X15 - ~400 Mbps
»  SSD: e.g., MTRON Pro 7000 – ~1.2 Gbps

–  network: Gb Ethernet (1 and 10 Gbps)
–  bus(ses):

»  PCI 64-bit, 133Mhz (8 Gbps)
»  PCI-Express (2 Gbps each direction/lane, 32x = 64 Gbps)  

–  computing in real-time
•  encryption
•  adaptation
•  transcoding

Outline
•  Multimedia Servers
•  Analysis of the YouTube streaming

system
•  Improving performance

– Caching
– Prefetching
– Recommendation systems

Server Hierarchy
•  Intermediate nodes or  

proxy servers may offload
the main master server 
 

•  Popularity of data: 
not all are equally popular – most
request directed to only a few  
 
 

•  Straight forward hierarchy:
–  popular data replicated and kept

close to clients
–  locality vs.  

communication vs.  
node costs

end-systems

local servers

master servers

regional
servers

completeness of
available content

General OS Structure and
Retrieval Data Path

file system communication
system

application

user space

kernel space

Server Internals Challenges
•  Data retrieval from disk and push to network for many

users 

•  Important resources:
–  memory
–  busses
–  CPU
–  storage (disk) system
–  communication (NIC) system 

 

•  Much can be done to optimize resource utilization,
e.g., scheduling, placement, caching/prefetching,
admission control, merging concurrent users, … 

•  Start presenting data (e.g., video playout) at t1 

•  Consumed bytes (offset)
–  variable rate
–  constant rate 

•  Must start retrieving  

data earlier
–  Data must arrive before 

consumption time
–  Data must be sent  

before arrival time
–  Data must be read from  

disk before sending time

Timeliness: Streaming

t1

time

consume function

arrive function

send function
read function

Watch Global, Cache Local: YouTube
Network Traffic at a Campus Network

– Measurements and Implications

•  Motivation
•  Measurement

•  How YouTube Works
•  Monitoring YouTube Traffic
•  Measurement Results

•  Distribution Infrastructures
•  Peer-to-Peer
•  Proxy Caching

•  Conclusions & Future Work

Overview

Motivation

•  YouTube is different from traditional VoD
•  Access to YouTube from a campus network
•  Influence on content distribution paradigms?
•  Correlation between global and local popularity?

•  Methodology:
•  Monitor YouTube traffic at campus gateway
•  Obtain global popularity
•  Video Clip traffic analysis
•  Trace-driven simulation for various content distribution

approaches

How YouTube Works! CDN server
located in
YouTube or
Limelight
network

Client

YouTube Web server

 (1) HTTP
 Get
 MSG

(2) HTTP
 Redirect
 MSG

(3) HTTP
 Get MSG

(4) Flash
 video stream

[Example of (1)]
Get /get_video?video_id=G_Y3y8escmA
HTTP/1.1

[Example of (2)]
HTTP/1.1 303 See other
Location: http://sjc-v110.sjc.youtube.com
 /get_video?video_id=G_Y3y8escmA

Monitor box

Monitoring YouTube Traffic
•  Monitor web server access

•  Destination or source IP of YouTube web server pool
•  Analyze HTTP GET and HTTP 303 See Other messages

•  Monitoring Video Stream
•  WWW access information to identify video stream
•  Construct flow to obtain:

•  Duration of streaming session
•  Average data rate
•  Amount of transferred payload data

23% 77% 17183 108 06/03-06/07 3
23% 77% 23515 72 05/22-05/25 2
23% 77% 12955 12 05/08- 05/09 1

Multi Single Total

Per Video Stats
Length
(Hours) Date Trace

of
Unique
Clients
2127
2480
1547

Measurement Results: Video
Popularity

R
eq

ue
st

s
pe

r v
id

eo
 /

O
ve

ra
ll

re
qu

es
ts

Measurement Results: Observations

•  No strong correlation between local and global
popularity observed: 0.04 (Trace1), 0.06 (Trace2),
0.06 (Trace3)

•  Neither length of measurement nor # of clients
observed seems to affect local popularity
distribution

•  Video clips of local interest have a high local
popularity

http://www.youtube.com/watch?v=dp4MYii7MqA

Measurement Results: Requests per
Client

47 4893 3170 3
25 5869 3899 2
17 3100 2149 1

Max.
number of
requests
per client

Total
number of
requests

Video clips with
multiple requests
from same client

Trace

Client in here means IP address (NAT, DHCP)

•  Motivation
•  Measurement

•  How YouTube Works
•  Monitoring YouTube Traffic
•  Measurement Results

•  Distribution Infrastructures
•  Peer-to-Peer
•  Proxy Caching

•  Conclusions & Future Work

Overview

Distribution Infrastructures

•  Trace-driven simulation based on traces 1, 2, and 3
•  Create sequential list of requests
•  Make use of results from stream flow analysis

0.19 10582 908 452 1.42x
108

6.3x 
106

2 97452 4431 0.04 16956.28 81.34 3

6.74 8633 646 95760 1.30x
108

6.4x 
106

76 89350 4478 0.53 2359.83 95.81 2

0.54 5450 632 484 2.15x
108

7.5x 
106

2 149098 5202 0.04 4421.00 99.62 1

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Rate (Kbps) Payload Size
(bytes)

Packets Duration (sec)
(Length of viewing)

Trace

Simulation: Peer-to-Peer

•  Peer availability based on flow trace file information
•  Window-based availability approach
•  Client availability influences hit rate

Client A (time T)

Client B (time T+x)

Simulation: Proxy Caching

•  FIFO cache replacement
•  Effective low cost solution since storage in the order of

100 GB is required
•  Hit rates quite similar for all three traces compared to

P2P results

Proxy Cache

Client A (time
T)
Client B (time T

+x)

Related Work
Parallel work to ours:
•  Cha et al. (IMC 2007):

•  Only information from YouTube server is analyzed
•  No information about benefits of using caching in access

networks
•  Gill et al. (IMC 2007):

•  Similar motivation to ours
•  Only predefined set of content servers could be monitored
•  General trend between their and our results observable

No simulative study on different distribution architectures

Conclusions

•  No strong correlation between local and global
popularity observed

•  Neither length of measurement nor # of clients
observed seems to affect local popularity distribution

•  Video clips of local interest have high local popularity
•  Demonstrated implications of alternative distribution

infrastructures
•  Client-based caching, P2P-based distribution, and

proxy caching can reduce network traffic and allow
faster access

Watching User Generated Videos
with Prefetching

User Generated Videos

•  Professional Produced Videos
–  Netflix
–  Hulu

•  User Generated Videos
–  YouTube, Youku, Tudou
–  Hundreds of millions of short

video clips
–  Wide ranges of topics

•  Growing user generated videos
–  Readily available device
–  Production cycle is short

Motivation
•  User experience in watching videos is not satisfactory

–  Slow startup time
–  Many pauses during playback

Measuring User Experiences Watching
YouTube

Video download traces from various environments

Likelihood of Experiencing Pauses

•  10 out of 12 environments contain playbacks with pauses
•  41 out of 117 playbacks (35%) contain pauses

Number of Pauses

•  31 out of 117 playouts (22.6%) contain more
than 10 pauses

How to improve user
experiences?

Video Prefetching Scheme

•  Prefetching Agent (PA)
–  Select videos to be prefetched and retrieve their prefixes
–  Store prefixes of prefetched videos
–  At clients (PF-Client) or proxy (PF-Proxy)

•  Predict videos that are most likely to be watched
–  PA determines videos to prefetch from incoming requests

How to select videos to prefetch?

•  PA predicts a set of videos
to be requested

•  Two main sources of video
requests
–  Search Result lists
–  Related Video lists

•  Use top N videos from these
lists

•  Advantages
–  Simple
–  Require no additional data
–  Effectiveness?

Datasets for Evaluation

•  Traces of data traffic between a campus network and
YouTube servers

•  Retrieve Search Result lists and Related video lists via
YouTube data API

How Often Users Click on Related Videos
and Search Results?

•  Determine the referrers of each video request in the traces
–  From URL patterns, e.g., feature=related, feature=channel
–  From inference: look at a browse session to infer requests from

Search Result list
•  Related Video lists and Search Results lists are the most

frequently used referrers

Evaluation Methodology

•  Issue the requests based on real user request
traces

•  Keep track of the videos in PA’s storage
•  Evaluation metric

–  Hit ratio: How many requests we can serve from the
PA’s storage?

Hit ratio = Hit requests

All requests

Effectiveness of various scheme
combinations

•  Videos from a Related Video list of a user are watched by other
users

•  Best combination is using RV-N algorithm with PF-Proxy setting

Combining Caching with Prefetching

•  Cache-and-Prefetch can reach up to 81% of hit ratio
•  Improvement is smaller as N increases due to larger

overlapping between prefetched videos and cached videos

Analyzing Hit Ratios
•  Only half of the hit

requests come from RV
lists

•  Requests from SR lists is
a large portion of the hit
requests especially in PF-
Proxy setting

•  Recommendation system
is a good indicator of topic
interest

PF-­‐Client	

PF-­‐Proxy	

Analyzing the High Hit Ratios

•  RV lists overlap with the
video requests generated
from other sources (esp. in
PF-Proxy) up to 70%

PF-­‐Client	

PF-­‐Proxy	

Storage Requirement

•  Measured in slots – a slot holds one prefix of a video
•  One slot = 2.5 MB (for prefix size of 30% and average

video size of 8.4 MB)
•  Require only 5 TB to reach 81% of hit ratio (at N=25)

Impact of Storage space

•  Hit ratio decreases with the storage space size
•  Still can achieve hit ratio of around 60% with 125 GB (50k slots)
•  Compared to caching, cache-and-prefetch always performs better

Do we need to prefetch the whole video?

•  Prefetching the whole videos is not necessary
•  From analysis of video download traces, each

location and each video requires different prefix size

Feasibility – Traffic Overhead
•  Suppose prefix size = 15%, N = 11 and caching

whole videos

•  Caching helps reduce the traffic
•  Pure prefetching yields higher hit ratio while

increase traffic by 44%
•  Combining the two results in highest hit ratio and

only introduce 2% additional traffic

Conclusion
•  Watching videos with prefix prefetching

– Delay and Pauses are often
– Prefix prefetching is feasible during browsing
– Related videos are good interest predictors
– Prefetching can reach hit ratio over 81% while

caching can reach hit ratio of 40%

Cache-centric Video
Recommendation: An Approach to
Improve the Efficiency of YouTube

Caches

Outline
•  Motivation

•  Approach

•  Chain Analysis

•  Cache Latency

•  Related List Reordering

•  Discussion

•  Conclusion

Motivation
•  YouTube is most popular user generated video

service.

•  Billions of videos with unequal popularity leads to
long tail.

•  Effective caching is difficult with such a long tail.

•  Users usually select next video from related list.

•  Caching and Prefetching of related list have shown to
be effective.

Motivation (Contd.)

Approach
• Reordering of related list based on the

content in cache.

• To verify the feasibility of reordering, we
perform chain analysis.

• We also perform the RTT analysis to
understand the origin of videos.

Trace Details
Trace File T1 T2

Duration 3 Days 3 Days

Start Date Feb 6th
2012

Jan 8th
2010

#Requests 105339 7562

#Related
Videos

47986 2495
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CD
F

of
 th

e
Ra

tio
 o

f N
um

be
r o

f V
ide

os
 in

 th
at

 P
os

itio
n

Related Video Position

Trace1
Trace2

Chain Analysis
•  Loop Count – Video selection ending in

loop.

• Chain Count – Video selection from
related list until the last video selected by
other means.

Chain Count
• Trace T1 – 84.76% chain count of 1 and

15.24% chain count of at least 2.

• Trace T2 – 48.2% chain count of 1 and
51.8% chain count of at least 2.

Chain Count Trace T1 Trace T2

Average 1.195 2.304

Maximum 8 21

Loop Count
• Global analysis using PlanetLab.
•  Loop length at fixed related video

positions for 100 video requests.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ch
ain

 Lo
op

 C
ou

nt

Position of the Related Video

US Region
EU Region
SA Region
AS Region

Loop Count (Contd.)
•  Loop length using random selections from

the related list.

• Repeated 50 times for to obtain loop
length.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Pe
rce

nta
ge

 of
 th

e N
um

be
r o

f V
ide

os
 wi

th
tha

t L
oo

p C
ou

nt

Loop Count

US Region
EU Region
AS Region
SA Region

Video Origin
• Requested 100 videos from Trace T1 and

their related videos.

• Calculated RTT for the data session in the
captured trace.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F
of

 th
e

N
um

be
r o

f V
id

eo
 R

eq
ue

st
s

RTT (ms)

Initial Video Requests
Related Video Requests

 0

 0.2

 0.4

 0.6

 0.8

 1

0 CacheLevel1 CacheLevel2 CacheLevel3

CD
F

of
 th

e
Nu

m
be

r o
f V

id
eo

 R
eq

ue
st

s

YouTube Caches

Initial Video Requests
Related Video Requests

Cache1 Cache2

Cache3

Related List Reordering

Reordering Approaches
• Content centric reordering

–  Related list selection based on content.

–  Position might change based on reordering.

•  Position centric reordering
–  Related list selection based on position of

original list.

–  Content might change based on reordering.

Reordering Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
D

F
 o

f
th

e
 R

a
tio

 o
f
N

u
m

b
e
r

o
f
V

id
e
o
s

in
 t
h
a
t
P

o
si

tio
n

Related Video Position

Position Centric Trace1
Content Centric Trace1
Position Centric Trace2
Content Centric Trace2

Trace No Reordering Content
Centric

Position
Centric

T1 6.71% 6.71% 11.83%

T2 4.71% 4.71% 22.90%

Discussion
• Cost of Recommendation List Reordering.

–  Cost of cache depends on the cache structure
and its size.

–  Using a plain hash table, worst case look up
time will be O(n).

–  Reordering comes with little extra cost but hit
rate is more substantial.

• Reduction in Server Load.
–  Trace T1 cache hit rate increase from 6.71% to

11.83%, load reduction from 93.29% to 88.17%.
–  Trace T2 hit rate increase from 4.71% to 22.9%,

load reduction of 18.19%.

Discussion (Contd..)
•  Popularity based sorting of related list.

–  Reordering of related list is performed without
taking into consideration of the popularity of
videos in the cache.

–  Only significant differences in popularity
would render the approach feasible.

• Adaptive video streaming.
–  Bandwidth adaptive video streaming contains

different formats of same video.

–  Each format is a different file and caching
them is not considered.

Conclusion
•  We take advantage of user behavior of watching

videos from related list.

•  Our approach is to reorder the related list to move
the content in the cache to top of the list.

•  We present two approaches to reordering selection
– Position centric and Content centric.

•  Position centric selection leads to a high cache hit
rate and reduction in server load due to reordering.

