Data Centers and Cloud Computing

Data Centers

- Large server and storage farms
 - 1000s of servers
 - Many TBs or PBs of data

- Used by
 - Enterprises for server applications
 - Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc

- Used for
 - Data processing
 - Web sites
 - Business apps
Traditional vs “Modern”

- Data Center architecture and uses have been changing

- Traditional - static
 - Applications run on physical servers
 - System administrators monitor and manually manage servers
 - Use Storage Array Networks (SAN) or Network Attached Storage (NAS) to hold data

- Modern - dynamic, larger scale
 - Run applications inside virtual machines
 - Flexible mapping from virtual to physical resources
 - Increased automation allows larger scale

Inside a Data Center

- Giant warehouse filled with:
 - Racks of servers
 - Storage arrays
 - Cooling infrastructure
 - Power converters
 - Backup generators
Modular Data Center

• ...or use shipping containers

• Each container filled with thousands of servers

• Can easily add new containers
 • “Plug and play”
 • Just add electricity

• Allows data center to be easily expanded
• Pre-assembled, cheaper

Server Virtualization

• Allows a server to be “sliced” into Virtual Machines

• VM has own OS/applications

• Rapidly adjust resource allocations

• VM migration within a LAN
Virtualization in Data Centers

• Virtual Servers
 • Consolidate servers
 • Faster deployment
 • Easier maintenance

• Virtual Desktops
 • Host employee desktops in VMs
 • Remote access with thin clients
 • Desktop is available anywhere
 • Easier to manage and maintain

Data Center Challenges

• Resource management
 • How to efficiently use server and storage resources?
 • Many apps have variable, unpredictable workloads
 • Want high performance and low cost
 • Automated resource management
 • Performance profiling and prediction

• Energy Efficiency
 • Servers consume huge amounts of energy
 • Want to be “green”
 • Want to save money
Reliability Challenges

• Typical failures in first year of a Google data center:
 • 0.5% overheat (power down most machines in under five minutes, expect 1-2 days to recover)
 • 1 PDU (Power Distribution Unit) failure (about 500-1000 machines suddenly disappear, budget 6 hours to come back)
 • 1 rack-move (You have plenty of warning: 500-1000 machines powered down, about 6 hours)
 • 1 network rewiring (rolling 5% of machines down over 2-day span)
 • 20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back) 5 racks go wonky (40-80 machines see 50% packet loss)
 • 8 network maintenances (4 might cause ~30-minute random connectivity losses)
 • 12 router reloads (takes out DNS and external virtual IP address (VIPS) for a couple minutes)
 • 3 router failures (have to immediately pull traffic for an hour)
 • dozens of minor 30-second blips for DNS
 • 1000 individual machine failures
 • thousands of hard drive failures

Data Center Costs

• Running a data center is expensive

Economy of Scale

• Larger data centers can be cheaper to buy and run than smaller ones
 • Lower prices for buying equipment in bulk
 • Cheaper energy rates

• Automation allows small number of sys admins to manage thousands of servers

• General trend is towards larger mega data centers
 • 100,000s of servers

• Has helped grow the popularity of cloud computing

What is the cloud?

Remotely available
Pay-as-you-go
High scalability
Shared infrastructure
The Cloud Stack

Software as a Service

- Hosted applications
- Managed by provider

Platform as a Service

- Platform to let you run your own apps
- Provider handles scalability

Infrastructure as a Service

- Raw infrastructure
- Can do whatever you want with it

PaaS: Google App Engine

- Provides highly scalable execution platform
 - Must write application to meet App Engine API
 - App Engine will autoscale your application
 - Strict requirements on application state
 - “Stateless” applications much easier to scale

- Not based on virtualization
 - Multiple users’ threads running in same OS
 - Allows google to quickly increase number of “worker threads” running each client’s application

- Simple scalability, but limited control
 - Only supports Java and Python
IaaS: Amazon EC2

• Rents servers and storage to customers
 • Uses virtualization to share each server for multiple customers
 • Economy of scale lowers prices
 • Can create VM with push of a button

<table>
<thead>
<tr>
<th></th>
<th>Smallest</th>
<th>Medium</th>
<th>Largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPUs</td>
<td>1</td>
<td>5</td>
<td>33.5</td>
</tr>
<tr>
<td>RAM</td>
<td>613MB</td>
<td>1.7GB</td>
<td>68.4GB</td>
</tr>
<tr>
<td>Price</td>
<td>$0.02/hr</td>
<td>$0.17/hr</td>
<td>$2.10/hr</td>
</tr>
<tr>
<td>Storage</td>
<td>$0.10/GB per month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>$0.10 per GB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Public or Private

• Not all enterprises are comfortable with using public cloud services
 • Don’t want to share CPU cycles or disks with competitors
 • Privacy and regulatory concerns

• Private Cloud
 • Use cloud computing concepts in a private data center
 • Automate VM management and deployment
 • Provides same convenience as public cloud
 • May have higher cost

• Hybrid Model
 • Move resources between private and public depending on load
 • Cloud Bursting
Programming Models

• Client/Server
 • Web servers, databases, CDNs, etc

• Batch processing
 • Business processing apps, payroll, etc

• Map Reduce
 • Data intensive computing
 • Scalability concepts built into programming model

Cloud Challenges

• Privacy / Security
 • How to guarantee isolation between client resources?

• Extreme Scalability
 • How to efficiently manage 1,000,000 servers?

• Programming models
 • How to effectively use 1,000,000 servers?
Further Resources

• “Above the Clouds” - cloud computing survey paper from Berkeley

• Workshops & Conferences
 • Hot Topics in Cloud Computing (HotCloud)
 • Symposium on Cloud Computing (SOCC)
 • lots of other small workshops
 • most recent systems conferences (NSDI, USENIX ATC, OSDI, SOSP)

• Other
 • Google App Engine / Amazon EC2 blogs
 • James Hamilton’s Perspectives: http://perspectives.mvdirona.com/