
Computer Science Lecture 18, page CS677: Distributed OS

Today: Fault Tolerance

• Agreement in presence of faults
– Two army problem
– Byzantine generals problem

• Reliable communication
• Distributed commit

– Two phase commit
– Three phase commit

• Failure recovery
– Checkpointing
– Message logging

1

Computer Science Lecture 18, page CS677: Distributed OS

Failure Masking by Redundancy

• Triple modular redundancy.

2

Computer Science Lecture 18, page CS677: Distributed OS

Agreement in Faulty Systems
• How should processes agree on results of a computation?
• K-fault tolerant: system can survive k faults and yet

function
• Assume processes fail silently

– Need (k+1) redundancy to tolerant k faults
• Byzantine failures: processes run even if sick

– Produce erroneous, random or malicious replies
• Byzantine failures are most difficult to deal with

– Need ? Redundancy to handle Byzantine faults

3

Computer Science Lecture 18, page CS677: Distributed OS

Byzantine Faults

• Simplified scenario: two perfect processes with unreliable channel
– Need to reach agreement on a 1 bit message

• Two army problem: Two armies waiting to attack
– Each army coordinates with a messenger
– Messenger can be captured by the hostile army
– Can generals reach agreement?
– Property: Two perfect process can never reach agreement in presence of unreliable

channel
• Byzantine generals problem: Can N generals reach agreement with a perfect

channel?
– M generals out of N may be traitors

4

Computer Science Lecture 18, page CS677: Distributed OS

Byzantine Generals Problem

• Recursive algorithm by Lamport
• The Byzantine generals problem for 3 loyal generals and 1 traitor.
a) The generals announce their troop strengths (in units of 1 kilosoldiers).
b) The vectors that each general assembles based on (a)
c) The vectors that each general receives in step 3.

5

Computer Science Lecture 18, page CS677: Distributed OS

Byzantine Generals Problem Example

• The same as in previous slide, except now with 2 loyal generals and one traitor.
• Property: With m faulty processes, agreement is possible only if 2m+1 processes function

correctly out of 3m+1 total processes. [Lamport 82]
– Need more than two-thirds processes to function correctly

6

Computer Science Lecture 18, page

Byzantine Fault Tolerance

• Detecting a faulty process is easier
– 2k+1 to detect k faults

• Reaching agreement is harder
– Need 3k+1 processes (2/3rd majority needed to eliminate the

faulty processes)
• Implications on real systems:

– How many replicas?
– Separating agreement from execution provides savings

CS677: Distributed OS 7

Computer Science Lecture 18, page CS677: Distributed OS

Reaching Agreement

• If message delivery is unbounded,
– No agreeement can be reached even if one process fails
– Slow process indistinguishable from a faulty one

• BAR Fault Tolerance
– Until now: nodes are byzantine or collaborative
– New model: Byzantine, Altruistic and Rational
– Rational nodes: report timeouts etc

8

Computer Science Lecture 18, page CS677: Distributed OS

Reliable One-One Communication
• Issues were discussed in Lecture 3

– Use reliable transport protocols (TCP) or handle at the application layer
• RPC semantics in the presence of failures
• Possibilities

– Client unable to locate server
– Lost request messages
– Server crashes after receiving request
– Lost reply messages
– Client crashes after sending request

9

Computer Science Lecture 18, page CS677: Distributed OS

Reliable One-Many Communication

•Reliable multicast
– Lost messages => need to

retransmit

•Possibilities
– ACK-based schemes

• Sender can become
bottleneck

– NACK-based schemes

10

Computer Science Lecture 18, page CS677: Distributed OS

Atomic Multicast

•Atomic multicast: a guarantee that all
process received the message or none at all

– Replicated database example
– Need to detect which updates have been

missed by a faulty process
•Problem: how to handle process crashes?
•Solution: group view

– Each message is uniquely associated
with a group of processes

• View of the process group when
message was sent

• All processes in the group should
have the same view (and agree on
it)

Virtually Synchronous Multicast

11

Computer Science Lecture 18, page CS677: Distributed OS

Implementing Virtual Synchrony in Isis

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from everyone

else
12

Computer Science Lecture 18, page

Implementing Virtual Synchrony

13

Computer Science Lecture 18, page CS677: Distributed OS

Distributed Commit

• Atomic multicast example of a more general problem
– All processes in a group perform an operation or not at all
– Examples:

• Reliable multicast: Operation = delivery of a message
• Distributed transaction: Operation = commit transaction

• Problem of distributed commit
– All or nothing operations in a group of processes

• Possible approaches
– Two phase commit (2PC) [Gray 1978]
– Three phase commit

14

Computer Science Lecture 18, page CS677: Distributed OS

Two Phase Commit
•Coordinator process coordinates
the operation
•Involves two phases

– Voting phase: processes vote on
whether to commit

– Decision phase: actually commit
or abort

15

Computer Science Lecture 18, page CS677: Distributed OS

Implementing Two-Phase Commit

• Outline of the steps taken by the coordinator in a
two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 while GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

16

Computer Science Lecture 18, page CS677: Distributed OS

Implementing 2PC
actions by participant:
write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}
if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

actions for handling decision requests: /
*executed by separate thread */

while true {

wait until any incoming DECISION_REQUEST

 is received; /* remain blocked */
 read most recently recorded STATE from the
local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting
 participant;
 else if STATE == INIT or STATE ==
 GLOBAL_ABORT
 send GLOBAL_ABORT to requesting
participant;
 else
 skip; /* participant remains blocked */

17

Computer Science Lecture 18, page

Recovering from a Crash

• If INIT : abort locally and inform coordinator
• If Ready, contact another process Q and examine Q’s

state

CS677: Distributed OS 18

Computer Science Lecture 18, page CS677: Distributed OS

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

19

Computer Science Lecture 18, page CS677: Distributed OS

Recovery

• Techniques thus far allow failure handling
• Recovery: operations that must be performed after a

failure to recover to a correct state
• Techniques:

– Checkpointing:
• Periodically checkpoint state
• Upon a crash roll back to a previous checkpoint with a

consistent state

20

Computer Science Lecture 18, page CS677: Distributed OS

Independent Checkpointing

• Each processes periodically checkpoints independently of other
processes

• Upon a failure, work backwards to locate a consistent cut
• Problem: if most recent checkpoints form inconsistenct cut, will need

to keep rolling back until a consistent cut is found
• Cascading rollbacks can lead to a domino effect.

21

Computer Science Lecture 18, page CS677: Distributed OS

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec 11]

• Upon a failure, roll back to the latest snapshot
– All process restart from the latest snapshot

22

Computer Science Lecture 18, page CS677: Distributed OS

Message Logging

• Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after previous

snapshot will need to be redone [wasteful]
• Combine checkpointing (expensive) with message

logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local stable storage
– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

23

