Last Class

* Leader election

* Distributed mutual exclusion

omputer Science CS677: Distributed OS Lecture 15, page |

Transactions

-Transagtlons pr0V1d_e hlgher level Client 1 Client 2
mechanism for atomicity of
processing in distributed systems Read A: $100
— Have their origins in databases Write A: $96
*Banking example: Three Read C: $300

accounts A:$100, B:$200, C:$300
— Client 1: transfer $4 from A to B

Write C:$297

— Client 2: transfer $3 from C to B Read B: $200
*Result can be inconsistent unless Read B: $200
certain properties are imposed on Write B:$203
the accesses Write B:$204

g Computer Science CS677: Distributed OS Lecture 15, page 2

ACID Properties

*Atomic: all or nothing Client 1 Client 2
*Consistent: transaction takes Read A: $100

system from one consistent state to Write A: $96

another i

*Isolated: Immediate effects are Ree.1d B: $200

not visible to other (serializable) Write B:$204

*Durable: Changes are permanent Read C: $300
once transaction completes Write C:$297
(commits)

Read B: $204
Write B:$207

Computer Science CS677: Distributed OS Lecture 15, page 3

Transaction Primitives

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Example: airline reservation

Begin_transaction
if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

nd_transaction

Computer Science CS677: Distributed OS Lecture 15, page 4

Distributed Transactions

I Nested transaction I | Distributed transaction |

ISubtransactionI lSub‘cransaction |

o,

Airline database Hotel database

ISubtransactionI ISubtransaotion |

I 1 I 1

Distributed database

Two different (independent) Two physically separated
databases parts of the same database

(@) (b)

K Compu’rer‘ Science CS677: Distributed OS Lecture 15, page 5

Implementation: Private Workspace

Each transaction get copies of all files, objects

Can optimize for reads by not making copies

Can optimize for writes by copying only what is required

Commit requires making local workspace global

Private
workspace

Original

Free blocks

C) (b) ©

J Computer Science CS677: Distributed OS Lecture 15, page 6

Option 2: Write-ahead Logs

» In-place updates: transaction makes changes directly to all files/objects

* Write-ahead log: prior to making change, transaction writes to log on stable
Storage

— Transaction ID, block number, original value, new value
* Force logs on commit
« Ifabort, read log records and undo changes [rollback]

* Log can be used to rerun transaction after failure

* Both workspaces and logs work for distributed transactions

* Commit needs to be atomic [will return to this issue in Ch. 7]

Computer Science CS677: Distributed OS Lecture 15, page 7

Writeahead Log Example

x=0; Log Log Log
y=0;

BEGIN_TRANSACTION;

X=x+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y = 0/2] [y = 0/2]
X=y*y; [x = 1/4]

END_TRANSACTION;
(@) (b) () (d)

* a) A transaction
 b)—d) The log before each statement is executed

Computer Science CS677: Distributed OS Lecture 15, page 8

Concurrency Control

* Goal: Allow several transactions to be executing
simultaneously such that

— Collection of manipulated data item is left in a consistent state

* Achieve consistency by ensuring data items are accessed
in an specific order

— Final result should be same as if each transaction ran
sequentially

* Concurrency control can implemented in a /ayered fashion

Computer Science CS677: Distributed OS Lecture 15, page 9

Concurrency Control Implementation

Transactions

\y/

READMWRITE | Transaction | BEGIN_TRANSACTION
manager END_TRANSACTION
v A
LOCK/RELEASE
Scheduler or
Timestamp operations
v A
Data Execute readfwrite
manager

* General organization of managers for handling transactions.

Computer Science CS677: Distributed OS Lecture 15, page 10

Distributed Concurrency Control

* General organization of
\’ l ‘/ managers for handling
distributed transactions.

Transaction
manager

Scheduler Scheduler Scheduler
A ~ W

Y &% [a v &1 -La v
Data Data Data
manager manager manager
Machine A Machine B Machine C
Computer Science CS677: Distributed OS Lecture 15, page 11

Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x=0; x=0; x=0;
X=x+1; X=X+2; X=X+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(a) (b) (c)
Schedule 1 X=0; x=x+1; x=0; x=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; Legal
Schedule 3 x=0; x=0; x=x+1, x=0; x=x+2; x=x+3; lllegal

* Key idea: properly schedule conflicting operations

* Conflict possible if at least one operation is write
— Read-write conflict
— Write-write conflict

Computer Science CS677: Distributed OS Lecture 15, page 12

Optimistic Concurrency Control

Transaction does what it wants and validates changes prior to
commit

— Check if files/objects have been changed by committed transactions since
they were opened

— Insight: conflicts are rare, so works well most of the time
Works well with private workspaces
Advantage:

— Deadlock free

— Maximum parallelism
Disadvantage:

— Rerun transaction if aborts

— Probability of conflict rises substantially at high loads

Not used widely

Computer Science CS677: Distributed OS Lecture 15, page 13

Two-phase Locking

Widely used concurrency control technique
Scheduler acquires all necessary locks in growing phase,
releases locks in shrinking phase
— Check if operation on data item x conflicts with existing locks
* If so, delay transaction. If not, grant a lock on x
— Never release a lock until data manager finishes operation on x
— One a lock is released, no further locks can be granted
Problem: deadlock possible

— Example: acquiring two locks in different order
Distributed 2PL versus centralized 2PL

Computer Science CS677: Distributed OS Lecture 15, page 14

Two-Phase Locking

Lock point

Growing phase Shrinking phase

»

Number of locks

* Two-phase locking.

Computer Science CS677: Distributed OS

Lecture 15, page 15

Strict Two-Phase Locking

Lock point

> < Shrinking phase

Growing phase >

All locks are released
at the same time

Tl

Number of locks

Time —»

* Strict two-phase locking.

Computer Science CS677: Distributed OS

Lecture 15, page 16

Timestamp-based Concurrency Control

Each transaction Ti is given timestamp ts(T1)

If Ti wants to do an operation that conflicts with Tj
— Abort Ti if ts(Ti) < ts(Tj)

When a transaction aborts, it must restart with a new
(larger) time stamp

Two values for each data item x
— Max-rts(x): max time stamp of a transaction that read x
— Max-wts(x): max time stamp of a transaction that wrote x

B Computer Science CS677: Distributed OS Lecture 15, page 17

Reads and Writes using Timestamps

« Read(x)
— If ts(T;) < max-wts(x) then Abort T,

— Else
« Perform R (x)

« Max-rts(x) = max(max-rts(x), ts(T,))
- Write(x)
— If ts(T;)<max-rts(x) or ts(T,)<max-wts(x) then Abort T,

— Else
- Perform W,(x)

« Max-wts(x) = ts(T,)

B Computer Science CS677: Distributed OS Lecture 15, page 18

Pessimistic Timestamp Ordering

tsep®) tspr(X) ts(To) tsyr() ts(Ty)
@ @ @) 2 @) oK
@) Time = tecr)1tative © fime =
tsr() tsgp() ts(T2) write tswr®) tSe) ts(T2)
@ |w mw @ | @ oK
(b) Time —» ® Time —»
ts(T) tsppx) ts() tspr)
(To) (Ts) (To) (Ts)
© Time = Abort @ Time = Abort
ts(T) tsyR(X) ts(T) tSient(®)
(To) (Ts) (To) (Ta)
(d) Time —» (h) Time —»

Compu'rer Science CS677: Distributed OS Lecture 15, page 19

