
Computer Science Lecture 15, page CS677: Distributed OS

Last Class

• Leader election

• Distributed mutual exclusion

1

Computer Science Lecture 15, page CS677: Distributed OS

Transactions
•Transactions provide higher level
mechanism for atomicity of
processing in distributed systems

– Have their origins in databases

•Banking example: Three
accounts A:$100, B:$200, C:$300

– Client 1: transfer $4 from A to B
– Client 2: transfer $3 from C to B

•Result can be inconsistent unless
certain properties are imposed on
the accesses

Client 1 Client 2
Read A: $100
Write A: $96

Read C: $300
Write C:$297

Read B: $200
Read B: $200
Write B:$203

Write B:$204

2

Computer Science Lecture 15, page CS677: Distributed OS

ACID Properties

•Atomic: all or nothing
•Consistent: transaction takes
system from one consistent state to
another
•Isolated: Immediate effects are
not visible to other (serializable)
•Durable: Changes are permanent
once transaction completes
(commits)

Client 1 Client 2
Read A: $100
Write A: $96
Read B: $200
Write B:$204

Read C: $300
Write C:$297
Read B: $204
Write B:$207

3

Computer Science Lecture 15, page CS677: Distributed OS

Transaction Primitives

Example: airline reservation
Begin_transaction
! if(reserve(NY,Paris)==full) Abort_transaction
! if(reserve(Paris,Athens)==full)Abort_transaction
! if(reserve(Athens,Delhi)==full) Abort_transaction
End_transaction

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

4

Computer Science Lecture 15, page CS677: Distributed OS

Distributed Transactions

a) A nested transaction
b) A distributed transaction

5

Computer Science Lecture 15, page CS677: Distributed OS

Implementation: Private Workspace
• Each transaction get copies of all files, objects
• Can optimize for reads by not making copies
• Can optimize for writes by copying only what is required
• Commit requires making local workspace global

6

Computer Science Lecture 15, page CS677: Distributed OS

Option 2: Write-ahead Logs

• In-place updates: transaction makes changes directly to all files/objects
• Write-ahead log: prior to making change, transaction writes to log on stable

storage
– Transaction ID, block number, original value, new value

• Force logs on commit
• If abort, read log records and undo changes [rollback]
• Log can be used to rerun transaction after failure

• Both workspaces and logs work for distributed transactions
• Commit needs to be atomic [will return to this issue in Ch. 7]

7

Computer Science Lecture 15, page CS677: Distributed OS

Writeahead Log Example

• a) A transaction
• b) – d) The log before each statement is executed

x = 0;
y = 0;
BEGIN_TRANSACTION;
 x = x + 1;
 y = y + 2
 x = y * y;
END_TRANSACTION;
 (a)

Log

[x = 0 / 1]

 (b)

Log

[x = 0 / 1]
[y = 0/2]

 (c)

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

 (d)

8

Computer Science Lecture 15, page CS677: Distributed OS

Concurrency Control

• Goal: Allow several transactions to be executing
simultaneously such that
– Collection of manipulated data item is left in a consistent state

• Achieve consistency by ensuring data items are accessed
in an specific order
– Final result should be same as if each transaction ran

sequentially

• Concurrency control can implemented in a layered fashion

9

Computer Science Lecture 15, page CS677: Distributed OS

Concurrency Control Implementation

• General organization of managers for handling transactions.

10

Computer Science Lecture 15, page CS677: Distributed OS

Distributed Concurrency Control
• General organization of

managers for handling
distributed transactions.

11

Computer Science Lecture 15, page CS677: Distributed OS

Serializability

• Key idea: properly schedule conflicting operations
• Conflict possible if at least one operation is write

– Read-write conflict
– Write-write conflict

BEGIN_TRANSACTION
 x = 0;
 x = x + 1;
END_TRANSACTION

 (a)

BEGIN_TRANSACTION
 x = 0;
 x = x + 2;
END_TRANSACTION

 (b)

BEGIN_TRANSACTION
 x = 0;
 x = x + 3;
END_TRANSACTION

 (c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

12

Computer Science Lecture 15, page CS677: Distributed OS

Optimistic Concurrency Control

• Transaction does what it wants and validates changes prior to
commit
– Check if files/objects have been changed by committed transactions since

they were opened
– Insight: conflicts are rare, so works well most of the time

• Works well with private workspaces
• Advantage:

– Deadlock free
– Maximum parallelism

• Disadvantage:
– Rerun transaction if aborts
– Probability of conflict rises substantially at high loads

• Not used widely

13

Computer Science Lecture 15, page CS677: Distributed OS

Two-phase Locking

• Widely used concurrency control technique
• Scheduler acquires all necessary locks in growing phase,

releases locks in shrinking phase
– Check if operation on data item x conflicts with existing locks

• If so, delay transaction. If not, grant a lock on x
– Never release a lock until data manager finishes operation on x
– One a lock is released, no further locks can be granted

• Problem: deadlock possible
– Example: acquiring two locks in different order

• Distributed 2PL versus centralized 2PL

14

Computer Science Lecture 15, page CS677: Distributed OS

Two-Phase Locking

• Two-phase locking.

15

Computer Science Lecture 15, page CS677: Distributed OS

Strict Two-Phase Locking

• Strict two-phase locking.

16

Computer Science Lecture 15, page CS677: Distributed OS

Timestamp-based Concurrency Control

• Each transaction Ti is given timestamp ts(Ti)
• If Ti wants to do an operation that conflicts with Tj

– Abort Ti if ts(Ti) < ts(Tj)
• When a transaction aborts, it must restart with a new

(larger) time stamp
• Two values for each data item x

– Max-rts(x): max time stamp of a transaction that read x
– Max-wts(x): max time stamp of a transaction that wrote x

17

Computer Science Lecture 15, page CS677: Distributed OS

Reads and Writes using Timestamps

• Readi(x)
– If ts(Ti) < max-wts(x) then Abort Ti

– Else
• Perform Ri(x)

• Max-rts(x) = max(max-rts(x), ts(Ti))

• Writei(x)
– If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti

– Else
• Perform Wi(x)

• Max-wts(x) = ts(Ti)
18

Computer Science Lecture 15, page CS677: Distributed OS

Pessimistic Timestamp Ordering

• Concurrency control using timestamps.

19

