Last Class: RPCs

• RPCs make distributed computations look like local computations

• Issues:
 – Parameter passing
 – Binding
 – Failure handling

Today:

• Lightweight RPCs

• Remote Method Invocation (RMI)
 – Design issues
Lightweight RPCs

• Many RPCs occur between client and server on same machine
 – Need to optimize RPCs for this special case => use a lightweight RPC mechanism (LRPC)
• Server S exports interface to remote procedures
• Client C on same machine imports interface
• OS kernel creates data structures including an argument stack shared between S and C

Lightweight RPCs

• RPC execution
 – Push arguments onto stack
 – Trap to kernel
 – Kernel changes mem map of client to server address space
 – Client thread executes procedure (OS upcall)
 – Thread traps to kernel upon completion
 – Kernel changes the address space back and returns control to client
• Called “doors” in Solaris
Doors

- Which RPC to use? - run-time bit allows stub to choose between LRPC and RPC

Other RPC Models

- Asynchronous RPC
 - Request-reply behavior often not needed
 - Server can reply as soon as request is received and execute procedure later
- Deferred-synchronous RPC
 - Use two asynchronous RPCs
 - Client needs a reply but can’t wait for it; server sends reply via another asynchronous RPC
- One-way RPC
 - Client does not even wait for an ACK from the server
 - Limitation: reliability not guaranteed (Client does not know if procedure was executed by the server).
Asynchronous RPC

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

Deferred Synchronous RPC

- A client and server interacting through two asynchronous RPCs
Remote Method Invocation (RMI)

• RPCs applied to objects, i.e., instances of a class
 – Class: object-oriented abstraction; module with data and operations
 – Separation between interface and implementation
 – Interface resides on one machine, implementation on another

• RMIs support system-wide object references
 – Parameters can be object references

Distributed Objects

• When a client binds to a distributed object, load the interface (“proxy”) into client address space
 – Proxy analogous to stubs
• Server stub is referred to as a skeleton
Proxies and Skeletons

• Proxy: client stub
 – Maintains server ID, endpoint, object ID
 – Sets up and tears down connection with the server
 – [Java:] does serialization of local object parameters
 – In practice, can be downloaded/constructed on the fly (why can’t this be done for RPCs in general?)

• Skeleton: server stub
 – Does deserialization and passes parameters to server and sends result to proxy

Binding a Client to an Object

Distr_object* obj_ref;
obj_ref = ...;
obj_ref-> do_something();

(a) Example with implicit binding using only global references

Distr_object objPref;
Local_object* obj_ptr;
obj_ref = ...;
obj_ptr = bind(obj_ref);
obj_ptr -> do_something();

(b) Example with explicit binding using global and local references
Parameter Passing

• Less restrictive than RPCs.
 – Supports system-wide object references
 – [Java] pass local objects by value, pass remote objects by reference

DCE Distributed-Object Model

- Distributed dynamic objects in DCE.
- Distributed named objects
Java RMI

• Server
 – Defines interface and implements interface methods
 – Server program
 • Creates server object and registers object with “remote object” registry

• Client
 – Looks up server in remote object registry
 – Uses normal method call syntax for remote methods

• Java tools
 – Rmiregistry: server-side name server
 – Rmic: uses server interface to create client and server stubs

Java RMI and Synchronization

• Java supports Monitors: synchronized objects
 – Serializes accesses to objects
 – How does this work for remote objects?

• Options: block at the client or the server
 • Block at server
 – Can synchronize across multiple proxies
 – Problem: what if the client crashes while blocked?
 • Block at proxy
 – Need to synchronize clients at different machines
 – Explicit distributed locking necessary

• Java uses proxies for blocking
 – No protection for simultaneous access from different clients
 – Applications need to implement distributed locking
Message-oriented Transient Communication

- Many distributed systems built on top of simple message-oriented model
 - Example: Berkeley sockets

Berkeley Socket Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket</td>
<td>Create a new communication endpoint</td>
</tr>
<tr>
<td>Bind</td>
<td>Attach a local address to a socket</td>
</tr>
<tr>
<td>Listen</td>
<td>Announce willingness to accept connections</td>
</tr>
<tr>
<td>Accept</td>
<td>Block caller until a connection request arrives</td>
</tr>
<tr>
<td>Connect</td>
<td>Actively attempt to establish a connection</td>
</tr>
<tr>
<td>Send</td>
<td>Send some data over the connection</td>
</tr>
<tr>
<td>Receive</td>
<td>Receive some data over the connection</td>
</tr>
<tr>
<td>Close</td>
<td>Release the connection</td>
</tr>
</tbody>
</table>
Message-Passing Interface (MPI)

- Sockets designed for network communication (e.g., TCP/IP)
 - Support simple send/receive primitives
- Abstraction not suitable for other protocols in clusters of workstations or massively parallel systems
 - Need an interface with more advanced primitives
- Large number of incompatible proprietary libraries and protocols
 - Need for a standard interface
- Message-passing interface (MPI)
 - Hardware independent
 - Designed for parallel applications (uses \textit{transient communication})
- Key idea: communication between groups of processes
 - Each endpoint is a \((\text{groupID}, \text{processID})\) pair

MPI Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_bsend</td>
<td>Append outgoing message to a local send buffer</td>
</tr>
<tr>
<td>MPI_send</td>
<td>Send a message and wait until copied to local or remote buffer</td>
</tr>
<tr>
<td>MPI_ssend</td>
<td>Send a message and wait until receipt starts</td>
</tr>
<tr>
<td>MPI_sendrecv</td>
<td>Send a message and wait for reply</td>
</tr>
<tr>
<td>MPI_isend</td>
<td>Pass reference to outgoing message, and continue</td>
</tr>
<tr>
<td>MPI_issend</td>
<td>Pass reference to outgoing message, and wait until receipt starts</td>
</tr>
<tr>
<td>MPI_recv</td>
<td>Receive a message; block if there are none</td>
</tr>
<tr>
<td>MPI_irecv</td>
<td>Check if there is an incoming message, but do not block</td>
</tr>
</tbody>
</table>