
CS677: Distributed OSComputer Science Lecture 6, page

Computing Parable

• The Lion and the Fox

• Courtesy: S. Keshav

1

Computer Science Lecture 4, page CS677: Distributed OS

Types of Hypervisors

• Type 1: hypervisor runs on “bare metal”
• Type 2: hypervisor runs on a host OS

– Guest OS runs inside hypervisor
• Both VM types act like real hardware

2

Computer Science Lecture 4, page CS677: Distributed OS

How Virtualization works?

• CPU supports kernel and user mode (ring0, ring3)
– Set of instructions that can only be executed in kernel mode

• I/O, change MMU settings etc -- sensitive instructions
– Privileged instructions: cause a trap when executed in kernel mode

• Result: type 1 virtualization feasible if sensitive instruction subset
of privileged instructions

• Intel 386: ignores sensitive instructions in user mode
– Can not support type 1 virtualization

• Recent Intel/AMD CPUs have hardware support
– Intel VT, AMD SVM

• Create containers where a VM and guest can run
• Hypervisor uses hardware bitmap to specify which inst should trap
• Sensitive inst in guest traps to hypervisor

3

Computer Science Lecture 4, page CS677: Distributed OS

Type 1 hypervisor

• Unmodified OS is running in user mode (or ring 1)
– But it thinks it is running in kernel mode (virtual kernel mode)
– privileged instructions trap; sensitive inst-> use VT to trap
– Hypervisor is the “real kernel”

• Upon trap, executes privileged operations
• Or emulates what the hardware would do

4

Computer Science Lecture 4, page CS677: Distributed OS

Type 2 Hypervisor

• VMWare example
– Upon loading program: scans code for basic blocks
– If sensitive instructions, replace by Vmware procedure

• Binary translation
– Cache modified basic block in VMWare cache

• Execute; load next basic block etc.
• Type 2 hypervisors work without VT support

– Sensitive instructions replaced by procedures that emulate
them.

5

Computer Science Lecture 4, page CS677: Distributed OS

Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS
• Paravirtualization: modify OS kernel to replace all

sensitive instructions with hypercalls
– OS behaves like a user program making system calls
– Hypervisor executes the privileged operation invoked by

hypercall.

6

Computer Science Lecture 4, page CS677: Distributed OS

Virtual machine Interface

• Standardize the VM interface so kernel can run on bare
hardware or any hypervisor

7

Computer Science Lecture 4, page CS677: Distributed OS

Memory virtualization

• OS manages page tables
– Create new pagetable is sensitive -> traps to hypervisor

• hypervisor manages multiple OS
– Need a second shadow page table
– OS: VM virtual pages to VM’s physical pages
– Hypervisor maps to actual page in shadow page table
– Two level mapping
– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault
• Paravirtualized - use hypercalls to inform

8

Computer Science Lecture 4, page

I/O Virtualization

• Each guest OS thinks it “owns” the disk
• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to
the guest OS

• Hypervisor converts block # to file offset for I/O
– DMA need physical addresses

• Hypervisor needs to translate

CS677: Distributed OS 9

Computer Science Lecture 4, page CS677: Distributed OS

Examples

• Application-level virtualization: “process virtual
machine”

• VMM /hypervisor

10

Computer Science Lecture 4, page

Virtual Appliances & Multi-Core

• Virtual appliance: pre-configured VM with OS/ apps
pre-installed
– Just download and run (no need to install/comfigure)
– Software distribution using appliances

• Multi-core CPUs
– Run multiple VMs on multi-core systems
– Each VM assigned one or more vCPU
– Mapping from vCPUs to physical CPUs

CS677: Distributed OS 11

Computer Science Lecture 4, page

Use of Virtualization Today

• Data centers:
– server consolidation: pack multiple virtual servers onto a

smaller number of physical server
• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers
– cloud provider controls physical machines and mapping of

virtual servers to physical hosts
– User gets root access on virtual server

• Desktop computing:
– Multi-platform software development
– Testing machines
– Run apps from another platform

12

Computer Science Lecture 4, page

Case Study: PlanetLab

• Distributed cluster across universities
– Used for experimental research by students and faculty in

networking and distributed systems
• Uses a virtualized architecture

– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

13

CS677: Distributed OSComputer Science Lecture 6, page

Code and Process Migration

• Motivation
• How does migration occur?
• Resource migration
• Agent-based system
• Details of process migration

14

CS677: Distributed OSComputer Science Lecture 6, page

Motivation

• Key reasons: performance and flexibility
• Process migration (aka strong mobility)

– Improved system-wide performance – better utilization of
system-wide resources

– Examples: Condor, DQS
• Code migration (aka weak mobility)

– Shipment of server code to client – filling forms (reduce
communication, no need to pre-link stubs with client)

– Ship parts of client application to server instead of data from
server to client (e.g., databases)

– Improve parallelism – agent-based web searches

15

CS677: Distributed OSComputer Science Lecture 6, page

Motivation

• Flexibility
– Dynamic configuration of distributed system
– Clients don’t need preinstalled software – download on demand

16

CS677: Distributed OSComputer Science Lecture 6, page

Migration models

• Process = code seg + resource seg + execution seg
• Weak versus strong mobility

– Weak => transferred program starts from initial state
• Sender-initiated versus receiver-initiated
• Sender-initiated

– migration initiated by machine where code resides
• Client sending a query to database server

– Client should be pre-registered

• Receiver-initiated
– Migration initiated by machine that receives code
– Java applets
– Receiver can be anonymous

17

CS677: Distributed OSComputer Science Lecture 6, page

Who executes migrated entity?

• Code migration:
– Execute in a separate process
– [Applets] Execute in target process

• Process migration
– Remote cloning
– Migrate the process

18

CS677: Distributed OSComputer Science Lecture 6, page

Models for Code Migration

• Alternatives for code migration.

19

CS677: Distributed OSComputer Science Lecture 6, page

Do Resources Migrate?

• Depends on resource to process binding
– By identifier: specific web site, ftp server
– By value: Java libraries
– By type: printers, local devices

• Depends on type of “attachments”
– Unattached to any node: data files
– Fastened resources (can be moved only at high cost)

• Database, web sites
– Fixed resources

• Local devices, communication end points

20

CS677: Distributed OSComputer Science Lecture 6, page

Resource Migration Actions

• Actions to be taken with respect to the references to local resources
when migrating code to another machine.

• GR: establish global system-wide reference
• MV: move the resources
• CP: copy the resource
• RB: rebind process to locally available resource

Unattached Fastened Fixed

By identifier
By value
By type

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

GR (or MV)
GR (or CP)
RB (or GR, CP)

GR
GR
RB (or GR)

Resource-to machine binding

Process-to-
resource

binding

21

CS677: Distributed OSComputer Science Lecture 6, page

Migration in Heterogeneous Systems
• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information
– Strong mobility: recompile code segment, transfer execution segment

[migration stack]
– Virtual machines - interpret source (scripts) or intermediate code [Java]

22

CS677: Distributed OSComputer Science Lecture 6, page

Virtual Machine Migration

• VMs can be migrates from one physical machine to
another

• Migration can be live - no application downtime
• Iterative copying of memory state

23

CS677: Distributed OSComputer Science Lecture 6, page

Case Study: Viruses and Malware

• Viruses and malware are examples of mobile code
– Malicious code spreads from one machine to another

• Sender-initiated:
– proactive viruses that look for machines to infect

• Autonomous code
• Receiver-initiated

– User (receiver) clicks on infected web URL or opens an
infected email attachment

24

