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ABSTRACT 

This paper presents a distributed algorithm to 
detect deadlocks in distributed data bases. 
Features of this paper are (I) a formal model of 
the problem is presented, (2) the correctness of 
the algorithm is proved, i.e. we show that all 
true deadlocks will be detected and deadlocks will 
not be reported falsely, (3) no assumptions are 
made other than that messages are received 
correctly and in order and (4) the algorithm is 
simple. 

I. INTRODUCTION 

A great deal of effort has gone into developing 
a distributed algorithm for detecting resource 
deadlocks in distributed data bases (DDBs) 
[3,4,7]. In a September 1980 paper Gligor and 
Shattuck [4] state "Renewed interest in 
distributed systems has resulted in the 
publication of at least ten protocols for deadlock 
detection. However, few of these protocols are 
correct and fewer appear to be practical." In 
this paper we present a solution to this much- 
studied problem. 

The following paragraph briefly reviews the 
literature on distributed deadlock detection. A 
model of deadook and an algorithm for deadlock 
detection suitable for message passin 6 systems 

appears in [I]. The message model of deadock 
assumes that a process which is waiting to 
communicate with other processes, cannot proceed 
with its execution until it communicates with a_~ 
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one of the processes it is waiting for. The DDB 
model considered in this paper and in [3,4,6,7] 
assumes that a process can proceed only when it 
receives all resources that it is waiting for. 
The any/all difference in these models results in 
completely different algorithms for deadlock 
detection. Deadlock detection for a class of 
communicating finite state machines is considered 
in [5]. In this paper we are concerned with 
dynamic detection of deadlocks rather than with 
proving that specific communicating sequential 
machines do not deadlock, which is the problem 
considered in [5]. We consider the general class 
of problems appearing in [3,4,7]. In particular, 
the DDB model we use is derived from Menasce and 

Muntz, one of the first papers in this area. For 
a complete review of the literaure see [4,6,8]. 

The organization of this paper is as follows. 
Section 2 presents a simple formal model of a 
distributed system; this model is called the basic 
model. Section 3 describes an algorithm to detect 
deadlock in the basic model and presents its 
proof. Performance issues are found in section 4. 
A distributed algorithm by which a deadlocked 
process can determine the identity of other 
processes in the deadocked set is presented in 
section 5. In section 6 we review the distributed 
data base model presented by Menasce and Muntz 
[3], who were about the first to treat the 
problem. We then show how the basic model 
algorithm can be extended to solve the DDB 
problem. 

2. THE BASIC MODEL 

2.1. Goal of This Section 

One of the difficulties with work in the area 
of DDBs is in describing the model of a DDB 
clearly and unambiguously. Since informal, 
operational models often result in ambiguity we 
~ave chosen to describe our model by axioms. Our 
proofs of correctness use these axioms; they do 
not rely on implicit assumptions about DDBs, The 
basic model which is described in this section is 
a simple, abstract model; its relevance to DDBs 
may not be clear immediately, but is discussed in 
detail in section 6. In the basic model, the 
state of computation is represented by a graph 
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called a wait-for graph [3] in which the vertices 
represent processes which may send and receive 
messages. We use a wait-for graph model because 
much of the earlier work is based on wait-for 
graphs. The graph also helps to distinguish the 
underlying DDB computation from the computation 
associated with deadlock detection. 

The basic model is described by two sets of 
axioms: graph axioms and process axioms. Graph 
axioms specify how the wait-for graph may change 
over time. Graph axioms are concerned exclusively 
with the underlying DDB computation and not with 
the computation associated with deadlock 
detection. Process axioms are concerned with the 
relationship between the deadlock detection 
computation and the underlying DDB computation. 
The goal of this section is to present and 
motivate the graph and process axioms. The model 
is described and the graph axioms are motivated in 
section 2.2, the graph axioms are presented in 2.3 
and the problem of distributed deadlock detection 
in the basic model is described in 2.4. The 
problem description relies on the graph axioms 
alone. The process axioms (section 2.5) are the 
rules which must be obeyed by any deadlock 
detection algorithm. An explanation for the 
process axioms is presented in section 2.6. 

2.2. Model Description 

A distributed system consists of a finite set 
of processes. A process is in one of two states: 
active or blocked. A process Pi is blocked if it 
is waiting for one or more processes to carry out 
some action (such as releasing resources needed by 
pi ). An active process is not waiting for any 
other process. When Pi needs pj to carry out some 
action it sends a request to pj; when pj carries 
out the requested ~ it sends a repIy to Pi" 
Only active processes may carry out actions for 
other processes, hence only active processes can 
send replies. The state of execution of all 
processes in a system is captured by a directed 
graph G called the wait-for graph. There is a 
one-to-one correspondence between vertices in G 
and processes in the system, with vertex v i 
corresponding to process Pi" Edge (vi,v j) exists 
in G if and only if Pi has sent a request to pj 
and has not yet received a reply. 

Edge Colours: The edges in G are coloured 
grey, black or white. Edge (vi,v j) is: 

grey: if Pi has sent a request to pj 
which pj has not received (yet). 

black: if pj has received a request from 
Pi and has not sent the 
corresponding reply to pj. 

white: if pj has sent a reply to Pi which 
Pi has not received (yet). 

We assume, for convenience, that there are 
vertices in the wait-for graph corresponding to 
terminated processes and to processes that have 
yet to be created. This allows us to ignore the 

addition and deletion of vertices in the wait-for 
graph. Of course, unborn and terminated processes 
cannot carry out actions for other processes or 
request actions from other processes. 

We now describe the behavior of a network of 
processes in terms of coloured graphs. We use 
process Pi and vertex vi, interchangeably. 

2.3. Graph Axioms GI - G4 

GI: (Creation): A grey edge (v:,v;) ± j 
may be created if edge (vi~v j) 
does not exist. 

G2: (Blackening): A grey edge will 
turn black after an arbitrary, 
finite time. 

G3: (Whitening): A black edge (vi,v j) 
may turn white only if vj has no 
outgoing edges. (Only active 
processes may reply). 

G4: (Deletion): A white edge will 
disappear after an arbitrary, 
finite time. 

We next define the deadlock detection problem 
for the basic model and present the process axioms 
which must be followed by a deadlock detection 
algorithm. 

2.4. The Deadlock Detection Problem in the Basic 
Model 

A dark cycle, i.e. a cycle in which all edges 
are grey or black (some may be grey and others 
black), will persist forever because, it follows 
from the graph axioms that edges in a dark cycle 
cannot be whitened or deleted. 

Problem PROBI: Construct a distributed 
algorithm by which a vertex v i can detect if it is 
part of a dark cycle. 

The algorithm by which v i determines if it is 
part of a dark cycle is called a probe 
computation. In probe computations vertices send 
messages, called probes, to one another; probes 
are concerned with deadlock detection exclusively 
and are distinct from requests and replies. We 
now present axioms which describe how processes 
communicate; these axioms show the relationship 
between requests, replies and probes. We assume 
that messages (i.e. requests, replies and probes) 
are received in finite time in the order sent. 

2.5. Process Axioms PI - P4 

An explanation of these axioms is given in 
section 2.6. 
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PI: 

P2: 

P3: 

P4: 

If a probe is sent by v i to vj 
when edge (vi,v j) is grey, edge 
(v~,v~) will turn black sometime j 
after this probe is sent and 
before it is received. If a probe 
from v i is received by v: when 

J 
edge (vi,v j) is black then edge 
(v.,v-) existed and was dark (grey 

i 3 
or black) at all times from the 
instant at which the probe was 
sent, to the instant the probe was 
received. 

If a probe is sent by v i to v~ 
when (v..,v~) is white then~(v..,v:~ 

J- O J- J 
will disappear sometime after thls 
probe is sent and before it is 
received. 

A vertex v i can determine 
(locally) if there is an outgoing 
edge (vi,v J) to any v~, though it 

J 
cannot d~termine ~ts colour 
(locally). A vertex v~ can 
determine (locally) if there Jis an 
incoming black edge (vi,vj), from 
any v i . 

Every probe will be received in 
some arbitrary finite time after 
it is sent. 

2.6. Explanation of the Process Axioms 

PI: A probe sent by v i to vj when (vi,v j) is 
grey-- must have been sent after v.. sent v.. the 
request which caused grey edge "~vi,v j) ~Jo be 
created. Since messages are received in-the order 
sent, the request must be received by v.. (causing 

J 
edge (v~,v~) to turn black) before the probe is 
received. The explanation for the second part of 
PI is similar. 

P2: A probe sent by vj to v i when edge (vi,v j) 
is white must have been sent after vj sent v i tNe 

reply which caused edge (vi,v j) to change colour 
from black to white. Since messages are received 
in the order sent, the reply must be received by 
v i (causing edge (vi,v j) to disappear) before v i 
receives the probe. 

P3: An edge (vi,v:) can be created and deleted 
by -~i, and v i alone; ~ence v~ can determine if it 
exists. An edge (vi,v j) is ~lack only if vj has 
received a request from v i and it has not yet sent 
a corresponding reply. Hence vj is aware of black 
edge (vi,vj). 

P4: Basic rule of message communication. 

This completes the description of the basic 
model. From now on, we will use only the axioms G I 
- G4 and PI - P4 to reason about the computation. 
Therefore, we do not use the terms "request," 
"reply," "resource," etc. hereafter. 

3. AN ALGORITHM FOR THE BASIC MODEL 

3.1. Goal of This Section 

The goal of this section is to present a 
solution to the problem, PROBI, presented in 
section 2.4: construct a distributed algorithm 
(i.e. a probe computation,) by which a vertex can 
Jetect if it is part of a dark cycle. In this 
section we do not discuss the question of when a 
vertex should initiate such a computation, this 
question is considered in section 4. Section 3.2 
introduces probe computations. Section 3.3 
presents the desired properties of probe 
computations while section 3.4 presents the probe 
computation algorithm itself. Correctness proofs 
are found in section 3.5. 

3.2. Introduction to Probe Computations 

To determine whether it is on a dark cycle, a 
vertex v i initiates a computation called a probe 
computation. Several vertices may initiate probe 
computations and the same vertex may initiate 
several probe computations. To distinguish each 
probe computation, the messages and variables used 
in the n-th computation initiateB by vertex i are 

tagged (i,n). In the next paragraph we shall 
discuss one probe computation, say the (i,n)th. 
In the interests of brevity we shall not tag 
messages and variables in the following discussion 
with (i,n); the tag should be understood 
implicitly. 

A vertex v~ will send at most one probe to any 
v k in one pro~e computation. The probe is said to 
be meaningful if and only if edge (vj,vk) exists 
and is black at the time that v k recelves the 
probe. From P3, v k can determine if a probe is 
meaningful. 

3.3. Properties of a Probe Computation: QRPI, 
QRP2 

A probe computation is designed to have the 
following two properties (proofs are in section 
3.5): 

QRPI: If the initiator of a probe 
computation is on a dark cycle 
when it initiates the probe 
computation then the initiator 
will eventually receive a 
meaningful probe. 

QRP2: If the initiator of a probe 
computation receives a meaningful 
probe then it is on a black cycle 
at the time at which it receives 
the probe. 
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3.4. Al~o<ithm for a Probe Computation 

Algorithm for the initiator, v i 

AO: Send probes along all outgoing 
edges. 

AI: Upon receiving the first 
meaningful probe declare that "v i 
is on a black cycle." 

Algorithm for a vertex vj other than the 
initiator 

A2: Upon receiving the first 
meaningful probe send probes on 
all outgoing edges. 

Note: Each step AO,AI,A2 of the algorithm, 
once started must be completed before the process 
can send or receive other messages. Therefore the 
set of outgoing edges from process v i in step AO 
(and process vj in step A2) do not change during 
the step. 

3.5. Proof of Correctness of a Probe Computation 

Theorem I (Property QRPI) 

If the initiator is on a dark cycle when it 
initiates the probe computation then it will 
eventually get a meaningful probe. 

Proof: Let the initiator vi, be on a dark (and 
therefore permanent) cycle C. v i will send a probe 
to its successor vertex v: in C (i.e. edge (vi,v i) 
is in C), and from PI t~is probe is meaningfuI; 
similarly vj will send a meaningful probe to its 
successor in C, and so on, and thus every vertex 
on C (including the initiator) will eventually 
receive a meaningful probe. 

Theorem 2 (Property QRP2) 

If the initiator receives a meaningful probe 
then it is on a black cycle when this probe is 
received. 

Proof: The initiator is the only vertex which 
can send a probe without having received a 
meaningful probe (follows from step A2 of the 
algorithm). Hence if the initiator v i receives a 
meaningful probe, there exists a finite sequence 
v ........ v .... where (I) v~,~ = Vj(n) : v i and 
.J~uJ J~uJ. ~ . JkU~ 
~z) Vi(k) recelves a meanlng~ui probe from vj( k I) 
at ti~e %k' and t(k-1) < t(k), k = I,..n-I. let 
e denote the edge (V.(k 1),V~tk)). We will prove 
t~e following asser@ioi fo~ ~ all k, 1<k<n by 
induction on k: at time t(k) the edges 

el,e2,...,e k are all black. The theorem then 
follows by setting k=n in this assertion. For 
k=1, the assertion follows from the definition of 
meaningful probe. Now inductively assume that 

el,e2,..,eK, K<n, are all black at t(K); we will 
prove that el,e 2 .... eK+ I are all black at t(K+1). 
We first prove that eK+ I exists in the interval 
[t(K), t(K+1)] and that it is black at t(K+1). 
From step A2 of the algorithm, e K existed at time 
t(K). From the definition of meaningful probe, 
eK+ I exists and is black at a later time t(K+1). 
From PI, eK+ I existed from the instant t' that 
Vj(K) sent the probe to time t(K+1) at which 

[~ )t I received the probe. Note 
+~ < t(K+1). From the algorithm (see note 

below algorithm) this edge existed at all times 
from t(K) to t'. Hence eK+ I exists at all times 
from t(K) to t(K+1). We now prove that edges 
eo,..,e K existed and were black in this interval. 
This follows from the observation that if e k 
exists in the interval [t(K),t(K+1)], then ek_ I 
exists and remains black in this interval (from 
induction hypothesis and G3), for k = I .... K. 
This proves the assertion. 

We have shown that a probe computation 
satisfies the desired properties presented in 
section 3.3. In the next section we discuss 
issues related to performance. 

4. PERFORMANCE ISSUES 

4.1. Goal Of This Section 

In section 3 we presented an algorithm (probe 
computation) by which a vertex can determine if it 
is on a dark cycle. In this section we will begin 
by discussing the question of when a vertex should 
initiate a probe computation (4.2). The volume of 
message traffic associated with probe computations 
and methods for reducing the number of probe 
computations are discussed in section 4.3. 

4.2. When Should a Vertex Initiate a Probe 
Computation? 

It is sufficient for any one vertex on a dark 
cycle to detect that it is deadlocked provided 
this vertex later informs all other vertices on 

the dark cycle that they are deadlocked too. An 
algorithm by which a deadlocked vertex informs 
other vertices that they too are deadlocked is 
presented in section 5. Therefore, in this 
section we need only be concerned with an 
initiation rule by which at least one vertex in a 
dark cycle will detect deadlock. 

We employ the following initiation rule: A 
vertex v i initiates a probe computation when any 
outgoing edge (vi,v~) is added to the wait-for 
graph. With this r~le, if the addition of edge 
(vi,v j) creates a dark cycle in the wait-for 
graph, then v i will detect that it is on a dark 
cycle, and hence deadlocked. Rules which yield 
better performance are treated in the next 
section. 
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4.3. Performance Aspects of the Algorithm 

Recall that to distinguish probe computations 
initiated by different vertices, and by the same 
vertex at different times we tag the n-th probe 
computation initiated by v i with (i,n), i.e. all 
probes and variables associated with that 
computation are tagged (i,n). If probe 
computation (i,n) is initiated, all probe 
computations (i,k) with k<n may be ignored. 
Therefore, every vertex need only keep track of 
one, (the latest) probe computation initiated by 
each vertex. Hence every process must keep track 
of N probe computations where N is the number of 
vertices in the graph. For a given probe 
computation, a vertex sends only one probe on an~ 
outgoing edge. Hence, there can be at most N 

probes in a single probe computation. 

The number of probe computations initiated can 
be reduced by having a vertex initiate a probe 
computation only if an outgoing edge (v~,v~) has ± j 
been in existence continuously for some tlme T, 
where T is a performance parameter. If edge 
(vi'v~)a is deleted before T time units have 
elapsed then v i has avoided initiating a probe 
computation. Issues related to determining the 
optimum value of T are found in [6]. The basic 
tradeoff is that if T is too small too many probe 
computations are initiated and if T is too large 
the time taken to detect deadlock (which is at 
least T) is too large. 

5. PROPAGATING WAIT-FOR GRAPH INFORMATION TO 
DEADLOCKED VERTICES 

5.1. Goal of This Section 

A distributed algorithm by which a vertex can 
determine all permanent black paths leading from 
it is presented in this section; the permanent 
black paths form the deadlocked portion of the 
wait-for graph, and determining the edges and 
vertices in the deadlocked portion of the graph is 
useful in breaking deadlocks. The question of how 
deadlocks should be broken is not treated here; 
the reader is encouraged to read [3,6]. 

5.2. Computation to Determine the Wait-For Graph 
(WFGD Computation) 

Messages in a WFGD computation consist of sets 
of edges. A message M sent to a vertex v; is a 
set containing only edges on permanent blac~paths 
(i.e. paths all of whose edges are black and are 
guaranteed to remain black) from vj. Each vertex 
v; has a local variable Sj, which-is the set of 
e~ges (that vj is aware of) on permanent black 
paths leading from vj. Initially Sj is empty, for 
all j. After the initiator v i of a probe 
computation receives a meaningful probe, it 
declares that it is on a black cycle and 
thereafter sends a message M = {(vj,vi)} to every 
vertex v~ if edge (v~,v~) is blac~ Since v~ is 
on a black cycle (~,v i) must be permanently 
black. On recelvlng a message M, vj sets 

S~ = S; M and thereafter sends M' where 
MV : {~Vk,V~)} S~ to every vertex v k where 
(Vk,V j) is ½lack, Jif it has not already sent the 
same message, M' to v k. Since M only contains 
edges on permanent, black paths leading from vj, 
M' only contains edges on permanent black patNs 
leading from v k. It is evident that every vertex 
will determine all permanent black paths leading 
from it in finite time. A WFGD computation will 
cease because a vertex never sends the same 
message (set of edges) twice to another vertex. 

6. THE DISTRIBUTED DATA BASE PROBLEM 

6.1. Goal of This Section 

We have presented and proved an algorithm for 
the basic model. We now show how the algorithm for 
the basic model can be extended to handle the 
distributed data base model considered in [3,4]. 
We first review the Menasce-Muntz DDB model 
(section 6.2) and point out the differences 
between the DDB model and the basic model in 
section 6.3. An abstraction of the DDB model, 
based on coloured graphs is found in section 6.4. 
Probe computations for the DDB model are 
introduced in section 6.5. The algorithm to solve 
the DDB deadlock problem is presented in section 
6.6, and a performance issue specific to DDBs is 
discussed in section 6.7. 

6.2. An Introduction to the DDB Deadlock Problem 

A DDB is implemented by N computers SI,..,S N. 
There is a local operating system or controller Cj 
at each computer S~ to schedule processes, manage 
resources and carry out communications. There are 
M transactions TI,..,T M running on the DDB. A 
t r a ~  -is implemented by a collection of 
processes with at most one process per computer. 
Each process is labeled with a tuple (Ti,S~) where 
T i is the identity of the transaction t~at the 
process belongs to and Sj is the computer on which 
the process runs. The tuple (Ti,S j) uniquely 
identifies a process. 

A controller C~ sends a message to a process 
(Ti,S j) by puttin~ the message in the process's 
memory area and scheduling the process. A process 
(Ti,S j) sends a message to its controller Cj by 
putting the message in the controller's memory 
area and then returning control to the controller. 
A process (Ti,S j) communicates directly only with 
its own controller Cj. Controllers may send 
messages to one anoth@r. Messages sent by any 
controller C.I to any controller C m will be 
received by C m in finite time and in the order 
sent by Cj. 

At some stage in a transaction's computation it 
may need to "lock" resources (such as files). 
There are different kinds of locks (read locks and 
write locks for instance) but the details 
regarding locks and locking protocols are not 
relevant to the problem described here; the reader 

is referred to [3,6]. When a process (Ti,S~) 
needs a resource it sends a request to i~s 
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controller C~. If Cj manages the resource it may 
accede to th~ process's request immediately or the 
process may have to wait to acquire the requested 
resource. If the requested resource is managed by 
some other controller C , then C. transmits the m J 
request on to process (Ti,S m) via controller Cm; 
the request is now made locally by process (Ti,S m) 
to its own controller C m. When (Ti,S m) acquires 
the requested resource from C~, it sends a message 
to (Ti,S j) (via C m and C~ stating that the 

J 
requested resource has been acqulred. (Ti,S j) may 
now proceed with its computation. When processes 
in a transaction T i no longer need a resource 
managed by controller Cm, they communicate with 
process (Ti,S m) who is responsible for releasing 
the resource to C m. 

A process cannot proceed with its computation 
unless it acquires every resource that it 
requests. Thus a process is blocked permanently 
from proceeding with computation if it never 
acquires a requested resource. We assume that if 
a single transaction runs by itself in the DDB it 
will terminate in finite time and eventually 
release all resources. When two or more 
transactions run in parallel, deadock may arise 
because each transaction may be blocked needing 
resources held by other transactions. The problem 
is to construct an algorithm to detect deadlock. 

6.3. Difference Between the DDB and Basic Model 

In the basic model, one process directly 
requests another to carry out some action. In the 
DDB model, a process may not be aware of other 
processes; furthermore, a process only 
communicates directly with its controller. Hence, 
the primary difference between the basic model and 
the DDB model is that in the basic model a process 
determines locally which processes to (request 
actions from and) wait for, whereas in the DDB 
model the controller at each computer determines 
the process waiting behavior at that computer. 

6.4. A Graph Model of DDB Deadlock 

As in the basic model there is a one-to-one 
correspondence between processes in the system and 

vertices in the wait-for graph G. There is an edge 
in G from a process (T i,S~) to another process 

J 
(Tk,S~) at the same computer S.., if controller C; 

J - -  j J 
has a reques t  from (T i ,S~)  f o r  resources  held by 

J 
(Tk,S.)j . Such an edge in G (which is incident on 
vertices corresponding to processes at a single 
controIler) is called an intra-controller edge. 
There is an edge in G from a process (Ti,S j) to 
another process (T i ,S m) within the same 
transaction T i (but at a different computer) if 
(Ti,S j) is waiting for a message that it has 
acquired a resource managed by Cm; such an edge is 
called an inter-controller edge. 

The colour of an inter-controller edge from 
(Ti,S.) to (T.,S) is grey, black or white, where J. i m 
the OOlOUrS have the same meaning as in the basic 
model, i.e. it is grey, if (T~,S~) has requested a 

± j 
resource managed by C m and C m has not received the 
request yet; it turns black when C m receives the 

request and white when C m gives the requested 
resource to (Ti,S m) (at which point it sends a 
message to (Ti,S i) saying that the resource has 
been acquired). ~ince the existence of an intra- 
controller edge ((T~,S~),(T~,S~)) depends only 
upon controller C~s Jawar~ne~s that (Ti,S~) 
requires a resource ~eld by (Tk,S) and since ~ 

J ' 
schedules (Ti,S j) and (Tk,S ~) we may assume tha~ 
all intra-contrSller edges ~re black. The formal 
graph model is described by the following axioms. 

Graph Axioms GI-G6 for a DDB 

Axioms regarding intra-controller edges 

GI: A black intra-controller edge 
((Ti,Si),(Tk,Si)) may be added to 
G if none exists. 

G2: A black intra-controller edge 
((T. S.),(T-,S.)) may be deleted 

' J ~as J i f  (Tk,S~)j no outgoing edges. 

Axioms regarding _inter-controller edge s 
(analogous to the basic model) 

G3: A grey inter-controller edge 

((Ti,S.),(Ti,Sm)) may be added to 
G if t~e edge does not exist. 

G4: A grey inter-controller edge will 
turn black in an arbitrary, finite 
time. 

G5: A black inter-controller edge 
((T.,S.),(T.,S)) can turn white 
• ~ 0 i m 
if (Ti,S m) has no outgoing edges. 

G6: A white inter-controller edge will 
disappear in arbitrary, finite 
time. 

A dark cycle in G will persist forever. The 
problem is to construct a distributed algorithm by 
which a controller C~ can determine if one of its 

J 
processes (T~,S4) is on a dark cycle. The 

J 
algorithm must satisfy the following process 
axioms which are analogous to the process axioms 
for the basic model. 

PI: If a probe is sent by Cito C m when edge 
((T~,Sj),(Ti,Sm)) is grey, then the edge will turn 
black Nome time after the probe is sent and before 
it is received. If a probe from C~ is received by 
C m when the edge is black then t~e edge existed 
and was dark from the instant that the probe was 
sent to the instant that the probe was received. 

P2: If a probe is sent by C m to C: when edge 
((T~,Sj),(Ti,Sm)) is white, then the J edge will 

disappear some time after this probe is sent and 
before it is received. 

162 



P3: A controller Cj can determine locally if 
there is an outgoing edge from any of its 
processes (Ti,S j) to any other process; however, 
it cannot determine locally the colour of inter- 
controller edges outgoing from (Ti,S.). A 
controller C m can determine locally if there is an 
incoming black edge to any of its processes 
(Ti,Sm). 

P4: A probe sent along any edge is received 
correctly and within finite time. 

6.5. The Probe Computation in the DDB Model 

A probe computation in a DDB model is exactly 
the same as in the basic model except that instead 
of processes, controllers send probes to one 
another. Instead of having a process (Ti,S~) send 
a probe to another process (Tk,S j) at th~ same 
computer S., controller C. merely labels (T k S.) 

3 J -- - ' 
as having received a meanzngful probe. As in t~e 
basic model, the n-th probe computation initiated 
by controller Cj is tagged (j,n), i.e. all labels 
and probes are tagged (j,n). If there is an 
outgoing inter-controller edge ((Ti,Sj),(Ti,Sm)) 
from a labeled process (T i,S.),j then C~ sends a 
probe to C m. This probe carries with i~ the tag 
(j,n) as well as the identity of the edge 
((T~, S~),(T~,S~)); this probe is said to be sent 
along e~ge ~(T~,Si),(Ti,Sm)). This probe, fro-----m 
controller C: to another controller Cm, is said to 
be meaningful if the edge ((Ti,Si),(Ti,Sm)) exists 
and is black at the time at whic~h C m receives the 
probe. We now describe a single probe 
computation, say the (j,n)th. Though the tag 
(j,n) does not appear explicitly in the 
description, it should be assumed. 

6.6. Algorithm for a Probe Computation 

Algorithm initiated by C A to determine if 
~roee@s (Ti,S j) .is on a dark cycle 

AO: 

AI: 

Label all processes (Tk,S:), 
reachable from process (Ti,S ]) 
along intra-controller edges. ~f 
(Ti,S~) is labelled, then declare 
that ait is on a black cycle of 
intra-controller edges. 
Otherwise, if there is an inter- 
controller edge from a labelled 
process (Ta,S j) to any process 
(Ta,S b) then send a probe to C b 
along edge ((Ta,Sj),(Ta,Sb)). 

Upon receiving a meaningful probe 
along any inter-controller edge 
((Tp,Sm),(Tp,Sj)), label (Tp,Sj) 
and all processes reachable from 
(T ,S.) along intra-controller 
ed~es~ If (Ti,S=)~ is labelled, 
declare that (Ti,S ])J is on a black 
cycle. 

Algorith m for a Controller C m Other Than the 
Initiator 

A2: Upon receiving a meaningful probe 
along an inter-controller edge 
directed towards a process (Ti,S m) 
label (Ti,S_) and all processes 
reachable ~rom (Ti,S m) along 
intra-controller edges. If there 
is an inter-controller edge from a 
labelled process (Ta,S m) to any 
process (Ta,S b) then send a probe 
to C b along edge ((Ta,Sm),(T~,Sb)) 
if such a probe has not a~ready 
been sent. 

Note: Each step A0,AI,A2 of the algorithm, 
once started, must be completed before the 
controller can send or receive other messages. 
Hence the intra-controller edges and outgoing 
inter-controller edges from processes in S.I cannot 
change during steps AO and AI. The a~alogous 
condition holds for S m in step A2. 

The proof of the algorithm for the DDB model is. 
exactly the same as for the basic model. The 
performance issues discussed for the basic model 
also apply to the DDB model. However, there is 
one performance issue which arises in the DDB 
model which does not arise in the basic model. 
The algorithm presented a b o v e  requires a 
controller Cj to initiate a separate probe 
computation for each of its constituent processes 

(Ti,S~). We now show how the number of probe 
computations can be reduced. 

6.7. How to Avoid Ini.tiatin ~ a Separate Probe 
Computation for Each Process 

When a controller C: wishes to determine if any 
of its constituent pro~esses are on dark cycles it 
first determines if there is a cycle along intra- 
controller edges alone. If there is no intra- 
controller cycle, then any cycle through any 
constituent process (Ti,S j) must include an inter- 
controller edge directed towards a constituent 
process (Tk,S~). Hence, it is sufficient for a 

J 
controller to initiate separate probe computations 
for processes with incoming (black) inter- 
controller edges. Hence, when a controller wishes 
to determine if any of its processes are 
deadlocked it initiates Q separate probe 
computations where Q is the number of constituent 
processes with incoming, black, inter-controller 
edges. 

7. SUMMARY 

We have presented a solution to the much- 
studied problem of deadlock detection in 
distributed data base systems. A formal model 
based on coloured graphs was used. For purposes 
of exposition, the problem was introduced in two 
stages: in the first stage, a simple model, 
called the basic model was intnoduced and in the 
second stage the Menasce-Muntz distributed data 
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base model was discussed. Our algorithm was 
proved correct. Details regarding the different 
modes of resource locking and other features of 
distributed data bases have not been included 
here. The reader is referred to [3,6]. 

A great deal of work remains to be done on 
evaluating the performance of the algorithm and on 
developing algorithms for different types of 
distributed systems. 

8. Mohan, C., "Distributed Data Base 
Management - Progress, Problems, Some 
Proposals and Future Directions,,, 
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Paper WP-7802, University of Texas, 
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