Today: Middleware and Distributed Objects

- Case study: EJBs (Enterprise Java Beans)
- Case study: CORBA

CS677: Distributed OS

Lecture 23, page 1

Distributed Objects

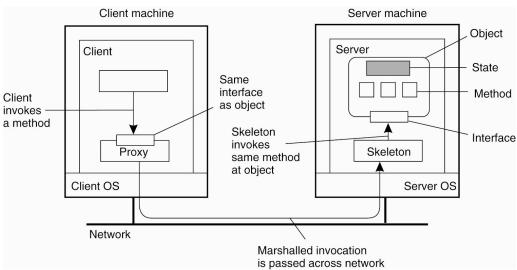


 Figure 10-1. Common organization of a remote object with client-side proxy.

CS677: Distributed OS

Distributed Objects vs. RPC

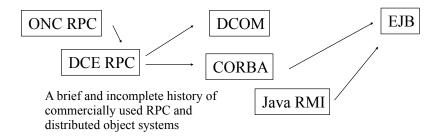
RPC: Remote Procedure Call

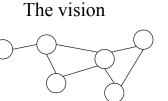
- Provides argument marshalling / unmarshalling
- Server handles invocation

Distributed Objects

- Remote methods on remote objects
- RPC + distributed object references

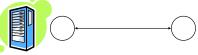
Distributed object operation:


- Server side: create object, register it (register with what?) (always in this order?)
- Client side: get object reference (from where?), invoke method



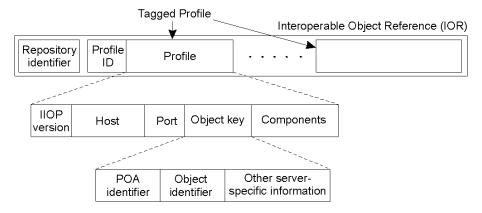
CS677: Distributed OS

Lecture 23, page 3


Distributed Objects through History

a Grand Distributed System

The reality


Client/Server

CS677: Distributed OS

Naming: Object References

CORBA object reference

• Interoperable object reference: language-independent techniques for referring to objects

CS677: Distributed OS

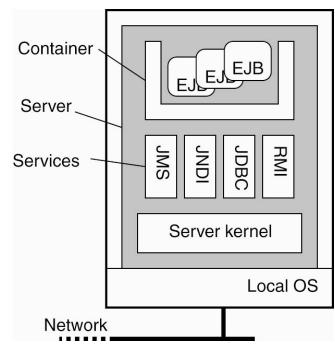
Lecture 23, page 5

Object references and Naming

- First versions of CORBA used opaque object references
 - How do you locate the object? Via a location service.
 - What is the interface to the location service?
 - How do you invoke the location service?
- Java (and CORBA 3.0) use **transparent** object references
 - Can be decoded at the client
 - Java reference can encode all information (e.g. code) needed to invoke an object.

CS677: Distributed OS

Binding


- Static vs. Dynamic binding
 - What is the difference?
 - Advantages of static binding?
 - Of dynamic binding?
- What state is involved in client binding?
 - What happens if the client crashes?
 - The server?

CS677: Distributed OS

Lecture 23, page 7

Example: Enterprise Java Beans

• Figure 10-2. General architecture of an EJB server.

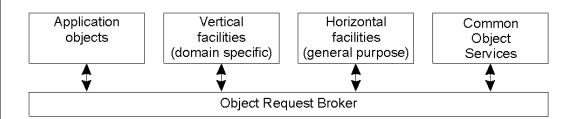
CS677: Distributed OS

Parts of an EJB

- Home interface:
 - Object creation, deletion
 - Location of persistent objects (entity beans)
 - Object identifier is class-managed
- Remote interface
 - "business logic"
 - i.e. the object itself
- Terminology differences
 - Client/server -> web applications

CS677: Distributed OS

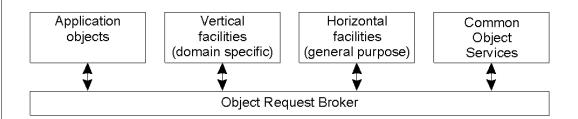
Lecture 23, page 9


Four Types of EJBs

- Stateless session beans
- Stateful session beans
- Entity beans
- Message-driven beans

CS677: Distributed OS

Overview of CORBA


- Common Object Request Broker Architecture
 - Specification of a distributed middleware
 - Specs drawn up by Object Management Group (OMG)
 - http://www.omg.org
- Goal: Interoperability with distributed applications on various platforms

CS677: Distributed OS

Lecture 23, page 11

CORBA Overview

- Object request broker (ORB)
 - Core of the middleware platform
 - Handles communication between objects and clients
 - Handles distribution and heterogeneity issues
 - May be implemented as libraries
- Facilities: composition of CORBA services

CS677: Distributed OS

Object Model

Client machine Server machine Client application Object implementation ORB Static Dynamic ORB Object Skeleton Dynamic interface adapter Skeleton interface IDL Invocation Interface Interface proxv Client ORB Server ORB Local OS Local OS Network

- Objects & services specified using an Interface Definition language (IDL)
 - Used to specify interface of objects and/or services
- ORB: run-time system that handles object-client communication
- Dynamic invocation interface: allows object invocation at run-time
 - Generic *invoke* operation: takes object reference as input
 - Interface repository stores all interface definitions

CS677: Distributed OS

Lecture 23, page 13

CORBA Services

- Collection service: group objects into lists, queues,...
- Query service: use query language to query for service(s)
- Concurrency control service: locking services
- Event service: interrupt upon a specific event
- Many more...
- Q: Do CORBA objects have a corresponding class?

CS677: Distributed OS

Corba Services

Service	Description	
Collection	Facilities for grouping objects into lists, queue, sets, etc.	
Query	Facilities for querying collections of objects in a declarative manner	
Concurrency	Facilities to allow concurrent access to shared objects	
Transaction	Flat and nested transactions on method calls over multiple objects	
Event	Facilities for asynchronous communication through events	
Notification	Advanced facilities for event-based asynchronous communication	
Externalization	Facilities for marshaling and unmarshaling of objects	
Life cycle	Facilities for creation, deletion, copying, and moving of objects	
Licensing	Facilities for attaching a license to an object	
Naming	Facilities for systemwide name of objects	
Property	Facilities for associating (attribute, value) pairs with objects	
Trading	Facilities to publish and find the services on object has to offer	
Persistence	Facilities for persistently storing objects	
Relationship	Facilities for expressing relationships between objects	
Security	Mechanisms for secure channels, authorization, and auditing	
Time	Provides the current time within specified error margins	

CS677: Distributed OS

Lecture 23, page 15

Object Invocation Models

Request type	Failure semantics	Description
Synchronous	At-most-once	Caller blocks until a response is returned or an exception is raised
One-way	Best effort delivery	Caller continues immediately without waiting for any response from the server
Deferred synchronous	At-most-once	Caller continues immediately and can later block until response is delivered

- Invocation models supported in CORBA.
 - Original model was RMI/RPC-like
 - Current CORBA versions support additional semantics

CS677: Distributed OS

What went wrong with CORBA?

- Where is it now?
 - Inside EJB, I think
 - Gnome desktop
 - Embedded CORBA?
- Design by committee
 - Competing commercial interests
 - ... time to go teach....

CS677: Distributed OS

Lecture 23, page 17

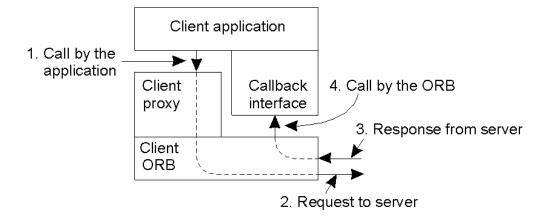
Event and Notification Services (1)

• The logical organization of suppliers and consumers of events, following the push-style model.

CS677: Distributed OS

Event and Notification Services (2)

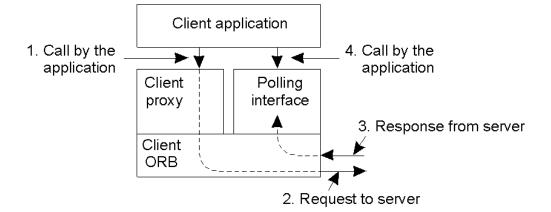
• The pull-style model for event delivery in CORBA.



CS677: Distributed OS

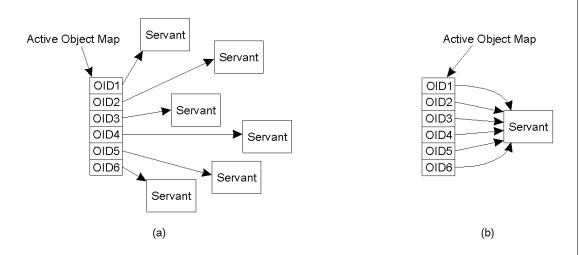
Lecture 23, page 19

Messaging: Async. Method Invocation


CORBA's callback model for asynchronous method invocation.

CS677: Distributed OS

Messaging (2)


CORBA'S polling model for asynchronous method invocation.

CS677: Distributed OS

Lecture 23, page 21

Portable Object Adaptor (1)

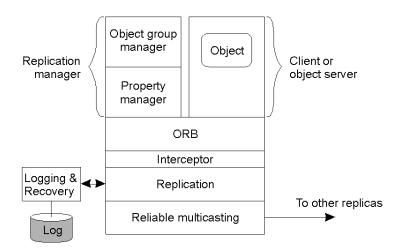
- POA: Wrappers for server-side code (makes code look like objects)
- a) The POA supports multiple servants.
- b) The POA supports a single servant.

Computer Science

CS677: Distributed OS

Portable Object Adaptor (2)

• Changing a C++ object into a CORBA object.



CS677: Distributed OS

Lecture 23, page 23

An Example Architecture

• An example architecture of a fault-tolerant CORBA system.

CS677: Distributed OS

Replication Frameworks (1)

- Invocations to objects are intercepted at three different points:
- At the client side just before the invocation is passed to the stub.
- Inside the client's stub, where the interception forms part of the replication algorithm.
- At the server side, just before the object is about to be invoked.

CS677: Distributed OS

Lecture 23, page 25

Replication Frameworks (2)

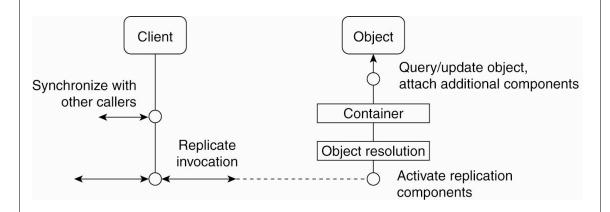
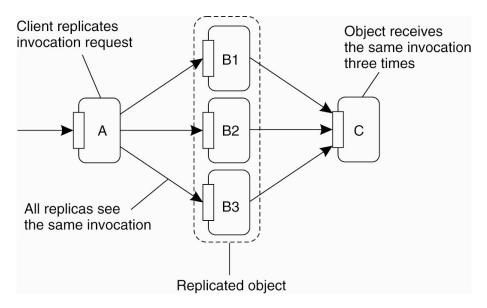
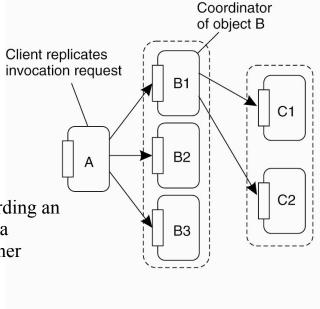



Figure 10-16. A general framework for separating replication algorithms from objects in an EJB environment.

CS677: Distributed OS

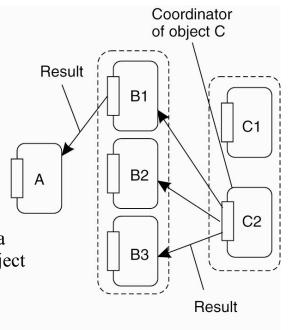
Replicated Invocations (1)


• Figure 10-17. The problem of replicated method invocations.

CS677: Distributed OS

Lecture 23, page 27

Replicated Invocations (2)


(a)

• Figure 10-18. (a) Forwarding an invocation request from a replicated object to another replicated object.

Computer Science

CS677: Distributed OS

(b)

• Figure 10-18. (b) Returning a reply from one replicated object to another.

CS677: Distributed OS