
Computer Science Lecture 21, page

Today: Coda, xFS

• Case Study: Coda File System

• Brief overview of other file systems
– xFS
– Log structured file systems

CS677: Distributed OS

Computer Science Lecture 21, page

Distributed File System Requirements

• Transparency
– Access, location, mobility, performance, scaling

• Concurrent file updates
• File replication
• Hardware and OS heterogeniety
• Fault tolerance
• Consistency
• Security
• Efficiency

Computer Science Lecture 21, page

AFS Background
• Alternative to NFS
• Originally a research project at CMU

– Then, defunct commercial product from Transarc (IBM)
• Public versions now available

– Goal: Single namespace for global files (sound familiar?
DNS? Web?)

• Designed for wide-area file sharing and scalability
• Example of stateful file system design

– Server keeps track of clients accessing files
• Uses callback-based invalidation

– Eliminates need for timestamp checking, increases scalability
– Complicates design

Computer Science Lecture 21, page

Coda Overview
• Offshoot of AFS designed for mobile clients

– Observation: AFS does the work of migrating popular/
necessary files to your machine on access

– Nice model for mobile clients who are often disconnected
• Use file cache to make disconnection transparent
• At home, on the road, away from network connection

• Coda supplements AFS file cache with user
preferences
– E.g., always keep this file in the cache
– Supplement with system learning user behavior

• Consistency issues?

Computer Science Lecture 21, page

Coda Consistency
• How to keep cached copies on disjoint hosts

consistent?
– In mobile environment, “simultaneous” writes can be

separated by hours/days/weeks
• Callbacks cannot work since no network connection

is available
• Coda approach (in order):

– Assume that write sharing the rare case
– Attempt automatic patch
– Fallback to manual (user) intervention

Computer Science Lecture 21, page

File Identifiers

• Each file in Coda belongs to exactly one volume
– Volume may be replicated across several servers
– Multiple logical (replicated) volumes map to the same

physical volume
– 96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OS

Computer Science Lecture 21, page

Sharing Files in Coda

• Transactional behavior for sharing files: similar to
share reservations in NFS
– File open: transfer entire file to client machine [similar to

delegation]
– Uses session semantics: each session is like a transaction

• Updates are sent back to the server only when the file is
closed

CS677: Distributed OS

Computer Science Lecture 21, page

Transactional Semantics

• Network partition: part of network isolated from rest
– Allow conflicting operations on replicas across file

partitions
– Reconcile upon reconnection
– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have
executed

– Conflict => force manual reconciliation

CS677: Distributed OS

Computer Science Lecture 21, page

Client Caching

• Cache consistency maintained using callbacks
– Server tracks all clients that have a copy of the file [provide

callback promise]
– Upon modification: send invalidate to clients

CS677: Distributed OS

Computer Science Lecture 21, page

Server Replication

• Use replicated writes: read-once write-all
– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?
– Use optimistic strategy for replication
– Detect conflicts using a Coda version vector
– Example: [2,2,1] and [1,1,2] is a conflict => manual

reconciliation
CS677: Distributed OS

Computer Science Lecture 21, page

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a
volume.

• Use hoarding to provide file access during disconnection
– Prefetch all files that may be accessed and cache (hoard) locally
– If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OS

Computer Science Lecture 21, page

Overview of xFS.
• Key Idea: fully distributed file system [serverless

file system]
– Remove the bottleneck of a centralized system

• xFS: x in “xFS” => no server
• Designed for high-speed LAN environments

CS677: Distributed OS

Computer Science Lecture 21, page

xFS Summary

• Distributes data storage across disks using software
RAID and log-based network striping
– RAID == Redundant Array of Independent Disks

• Dynamically distribute control processing across all
servers on a per-file granularity
– Utilizes serverless management scheme

• Eliminates central server caching using cooperative
caching
– Harvest portions of client memory as a large, global file cache.

CS677: Distributed OS

Computer Science Lecture 21, page

RAID Overview

• Basic idea: files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some
components failed

• Disks will still fail
• Contents reconstructed from data redundantly stored in

the array
– Capacity penalty to store redundant info
– Bandwidth penalty to update redundant info

Slides courtesy David Patterson

Computer Science Lecture 21, page

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity
Volume
Power

Data Rate
I/O Rate
MTTF
Cost

IBM 3390K
20 GBytes
97 cu. ft.
3 KW

15 MB/s
600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.
1 KW

120 MB/s
3900 IOs/s

??? Hrs
$150K

Disk Arrays have potential for large data and I/O rates, high MB
per cu. ft., high MB per KW, but what about reliability?

9X

3X

8X

6X

Computer Science Lecture 21, page

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

 50,000 Hours ÷ 70 disks = 700 hours

 Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

Computer Science Lecture 21, page

Redundant Arrays of Inexpensive Disks
RAID 0: Striping

• Stripe data at the block level across multiple disks
• High read and write bandwidth
• Not a true RAID since no “redundancy”
• Failure of any one drive will cause the entire array

to become unavailable

Computer Science Lecture 21, page

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth sacrifice on write:
• Logical write = two physical writes
• Reads may be optimized

• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip…involves Hamming codes)

recovery
group

Computer Science Lecture 21, page

RAID-I
• RAID-I (1989)

–Consisted of a Sun 4/280
workstation with 128 MB of
DRAM, four dual-string SCSI
controllers, 28 5.25-inch SCSI
disks and specialized disk
striping software

Computer Science Lecture 21, page

Redundant Array of Inexpensive Disks
RAID 3: Parity Disk

P

10010011
10101101
10010111

. . .
 logical record 1

0
0
1
0
0
1
1

1
0
1
0
1
1
0
1

1
0
0
1
0
1
1
1

1
0
1
0
1
0
0
1

• P contains sum of other
disks per stripe mod 2

(“parity”)
• If disk fails, subtract P

from sum of other
disks to find missing

information

Striped physical
records

Computer Science Lecture 21, page

RAID 3

• Sum computed across recovery group to protect
against hard disk failures, stored in P disk

• Logically, a single high capacity, high transfer rate
disk: good for large transfers

• But byte level striping is bad for small files (all disks
involved)

• Parity disk is still a bottleneck

Computer Science Lecture 21, page

Inspiration for RAID 4

• RAID 3 stripes data at the byte level
• RAID 3 relies on parity disk to discover errors on

read
• But every sector on disk has an error detection field
• Rely on error detection field to catch errors on read,

not on the parity disk
• Allows independent reads to different disks

simultaneously
• Increases read I/O rate since only one disk is accessed

rather than all disks for a small read

Computer Science Lecture 21, page

Redundant Arrays of Inexpensive
Disks RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P

.

.
.
.

.

.
.
.

.

.

Disk Columns

Increasing
Logical
Disk

Address

Stripe

Insides of 5
disks

Example:
small read
D0 & D5,

large write
D12-D15

Computer Science Lecture 21, page

Inspiration for RAID 5
• RAID 4 works well for small reads
• Small writes (write to one disk):

– Option 1: read other data disks, create new sum and write to
Parity Disk

– Option 2: since P has old sum, compare old data to new data,
add the difference to P

• Small writes are still limited by Parity Disk: Write to D0,
D5, both also write to P disk

D0 D1 D2 D3 P

D4 D5 D6 PD7

Computer Science Lecture 21, page

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity

Independent
writes

possible
because of
interleaved

parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.
.
.

.

.
.
.

.

.
Disk Columns

Increasing
Logical
Disk

Addresses

Example:
write to D0,

D5 uses
disks 0, 1, 3,

4

Computer Science Lecture 21, page

Problems of Disk Arrays:
Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

Computer Science Lecture 21, page

xFS uses software RAID

• Two limitations
– Overhead of parity management hurts performance for

small writes
• Ok, if overwriting all N-1 data blocks
• Otherwise, must read old parity+data blocks to calculate

new parity
• Small writes are common in UNIX-like systems

– Very expensive since hardware RAIDS add special
hardware to compute parity

Computer Science Lecture 21, page

Log-structured FS
• Provide fast writes, simple recovery, flexible file

location method
• Key Idea: buffer writes in memory and commit to

disk in large, contiguous, fixed-size log segments
– Complicates reads, since data can be anywhere
– Use per-file inodes that move to the end of the log to

handle reads
– Uses in-memory imap to track mobile inodes

• Periodically checkpoints imap to disk
• Enables “roll forward” failure recovery

• Drawback: must clean “holes” created by new writes

Computer Science Lecture 21, page

Combine LFS with software RAID
• Addresses small write problem

– Each log segment spans a RAID stripe
– Avoids the parity recomputation

• xFS maintains 4 maps
– File directory Map

• Maps human-readable names to index number
– Manager Map

• Determines which manager to contact for a file
– Imap

• Determines where to look for file in on-disk log
– Stripe group Map

• Mapping to set of physical machines storing segments

Computer Science Lecture 21, page

Processes in xFS

• The principle of log-based striping in xFS
– Combines striping and logging

CS677: Distributed OS

Computer Science Lecture 21, page

Reading a File Block

• Reading a block of data in xFS.

CS677: Distributed OS

Computer Science Lecture 21, page

xFS Naming

• Main data structures used in xFS.

CS677: Distributed OS

Data structure Description

Manager map Maps file ID to manager

Imap Maps file ID to log address of file's inode

Inode Maps block number (i.e., offset) to log address of block

File identifier Reference used to index into manager map

File directory Maps a file name to a file identifier

Log addresses Triplet of stripe group, ID, segment ID, and segment offset

Stripe group map Maps stripe group ID to list of storage servers

Computer Science Lecture 21, page

Transactional Semantics

• Network partition: part of network isolated from rest
– Allow conflicting operations on replicas across file

partitions
– Reconcile upon reconnection
– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have
executed

– Conflict => force manual reconciliation
CS677: Distributed OS

File-associated data Read? Modified?

File identifier Yes No

Access rights Yes No

Last modification time Yes Yes

File length Yes Yes

File contents Yes Yes

