Server Design Issues

: P Server machine
Client machine ci hi Server machine
2. Reqyest Register lienimachirie 2. Continue
wy Server | end point service 3| Actual « Create
. ' | semvice
Client |« Client |« server server for
\\ ™ requested
] \ service
a Super-
1. Askfor ™ 8\ ot 1. Request e
end point Daemon \taT)I(;pom service

(a) (b)
* Server Design
— Iterative versus concurrent
* How to locate an end-point (port #)?
— Well known port #

— Directory service (port mapper in Unix)
— Super server (inetd in Unix)

m Computer Science
UMASS

CS677: Distributed OS

Lecture 5, page

Stateful or Stateless?

» Stateful server

— Maintain state of connected clients

— Sessions in web servers
 Stateless server

— No state for clients

» Soft state

— Maintain state for a limited time; discarding state does not
impact correctness

m Computer Science CS677: Distributed OS
UMASS

Lecture 5, page

Server Clusters

Logical swich | Application/compute servers | Distributed Logically a
(possibly multiple) | file/dat

| ‘ sys(e?n single TCP Response Server
connection
v 1)
L = <—y—> Request Request :
=S e ol R 7“2
\\ D D —— :

First tier ' Third tier Server

» Web applications use tiered architecture
— Each tier may be optionally replicated; uses a dispatcher

— Use TCP splicing or handoffs

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Code and Process Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Motivation

» Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

* Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data from
server to client (e.g., databases)

— Improve parallelism — agent-based web searches

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Motivation

- Flexibility
— Dynamic configuration of distributed system
— Clients don’t need preinstalled software — download on demand

2. Client and server
communicate

/ Server

-
N\ 1

1. Client fetches code

Client

/

Service-specific
client-side code

Code repository

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Migration models

Process = code seg + resource seg + execution seg
Weak versus strong mobility

— Weak => transferred program starts from initial state
Sender-initiated versus receiver-initiated
Sender-initiated

— migration initiated by machine where code resides

* Client sending a query to database server
— Client should be pre-registered

Receiver-initiated
— Migration initiated by machine that receives code

— Java applets

— Receiver can be anonymous
m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Models for Code Migration

Execute at
Sender-initiated — target process
mobility ~~_ Execute in

N separate process
Weak mobility

Execute at
Receiver-initiated — target process

mobility “~__ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P
/ mobility ~_

Clone process
Strong mobility

Migrat
Receiver-initiated — 'grate process
mobility

Clone process

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Do Resources Migrate?

» Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
* Database, web sites
— Fixed resources
* Local devices, communication end points

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding| By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

» Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

* MV: move the resources

« CP: copy the resource

» RB: rebind process to locally available resource

m Computer Science
UMASS

CS677: Distributed OS Lecture 5, page

Migration in Heterogeneous Systems

» Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
procedure call onto
migration stack

Local stack

/f*\h operations B
T Vi Local
Procedure B <\ - e (variables B
//\{ I Return label
e \ / (jump) to A
. B ‘
Call from / (Local \ Parameter
values for B
AtoB / variables B
Identification
- /_/_,» Return addr. for proc. B
- fromB \
% k\ Parameter Local
{ Push procedure k values for B variables A
call onto program Return label
\\ stack Local stack to caller A
operations A Parameter
_Lobcla\ A values for A
variables
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)

CS677: Distributed OS Lecture 5, page

m Computer Science
UMASS

Case study: Agents

* Software agents

— Autonomous process capable of reacting to, and initiating
changes in its environment, possibly in collaboration

— More than a “process” — can act on its own
* Mobile agent
— Capability to move between machines

— Needs support for strong mobility
— Example: D’ Agents (aka Agent TCL)

* Support for heterogeneous systems, uses interpreted
languages

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Case Study: Viruses and Malware

 Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
* Sender-initiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

Case Study: PlanetLab

Priviliged management

User-assigned
virtual machines

virtual machines

$59201d
§8820.1d
$50001d
$59201d
$59201d
§8820.1d
$59001d
$58201d
$59201d
$59201d

Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

* Distributed cluster across universities
— Used for experimental research by students and faculty in
networking and distributed systems
e Uses a virtualized architecture

— Linux Vservers

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Lecture 5, page

m Computer Science CS677: Distributed OS
UMASS

Case Study: ISOS

* Internet scale operating system
— Harness compute cycles of thousands of PCs on the Internet

— PCs owned by different individuals
— Donate CPU cycles/storage when not in use (pool resouces)

— Contact coordinator for work
— Coodinator: partition large parallel app into small tasks

— Assign compute/storage tasks to PCs

« Examples: Seti@home, P2P backups

Lecture 5, page

m Computer Science CS677: Distributed OS
UMASS

Case study: Condor

» Condor: use idle cycles on workstations in a LAN

» Used to run lareg batch jobs, long simulations

* Idle machines contact condor for work

* Condor assigns a waiting job

 User returns to workstation => suspend job, migrate
 Flexible job scheduling policies

m Computer Science CS677: Distributed OS Lecture 5, page
UMASS

