
Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

•Will consider only shared memory multiprocessor or multi-core CPU

•Salient features:
– One or more caches: cache affinity is important
– Semaphores/locks typically implemented as spin-locks: preemption during 

critical sections
•Multi-core systems: some caches shared (L2,L3); others are not

1

Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

•Central queue – queue can be a bottleneck

•Distributed queue – load balancing between queue

2



Computer Science Lecture 4, page CS677: Distributed OS

Scheduling

• Common mechanisms combine central queue with per 
processor queue (SGI IRIX)

• Exploit cache affinity – try to schedule on the same 
processor that a process/thread executed last

• Context switch overhead
– Quantum sizes larger on multiprocessors than uniprocessors

3

Computer Science Lecture 4, page CS677: Distributed OS

Distributed Scheduling: Motivation

• Distributed system with N workstations
– Model each w/s as identical, independent M/M/1 systems
– Utilization u, P(system idle)=1-u

• What is the probability that at least one system is idle 
and one job is waiting?

4



Computer Science Lecture 4, page CS677: Distributed OS

Implications

• Probability high for moderate system utilization
– Potential for performance improvement via load distribution

• High utilization => little benefit
• Low utilization => rarely job waiting
• Distributed scheduling (aka load balancing) potentially useful
• What is the performance metric?

– Mean response time
• What is the measure of load?

– Must be easy to measure
– Must reflect performance improvement

5

Computer Science Lecture 4, page CS677: Distributed OS

Design Issues

• Measure of load
– Queue lengths at CPU, CPU utilization

• Types of policies
– Static: decisions hardwired into system
– Dynamic: uses load information
– Adaptive: policy varies according to load

• Preemptive versus non-preemptive
• Centralized versus decentralized
• Stability: !>µ => instability, !1+!2<µ1+µ2=>load balance

– Job floats around and load oscillates

6



Computer Science Lecture 4, page CS677: Distributed OS

Components

• Transfer policy: when to transfer a process?
– Threshold-based policies are common and easy

• Selection policy: which process to transfer?
– Prefer new processes
– Transfer cost should be small compared to execution cost

• Select processes with long execution times
• Location policy: where to transfer the process?

– Polling, random, nearest neighbor
• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven 
[periodic], state-change-driven [send update if load changes]

7

Computer Science Lecture 4, page CS677: Distributed OS

Sender-initiated Policy

• Transfer policy

• Selection policy: newly arrived process
• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers
– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job
– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

8



Computer Science Lecture 4, page CS677: Distributed OS

Receiver-initiated Policy

• Transfer policy: If departing process causes load < T, 
find a process from elsewhere

• Selection policy: newly arrived or partially executed 
process

• Location policy:
– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing
– Shortest: poll n nodes in parallel, choose node with heaviest 

load above T

9

Computer Science Lecture 4, page CS677: Distributed OS

Symmetric Policies
• Nodes act as both senders and receivers: combine 

previous two policies without change
– Use average load as threshold

• Improved symmetric policy: exploit polling information
– Two thresholds: LT, UT, LT <= UT
– Maintain sender, receiver and OK nodes using polling info
– Sender: poll first node on receiver list …
– Receiver: poll first node on sender list …

10



Computer Science Lecture 4, page CS677: Distributed OS

Case Study: V-System (Stanford)

• State-change driven information policy
– Significant change in CPU/memory utilization is broadcast to 

all other nodes
• M least loaded nodes are receivers, others are senders
• Sender-initiated with new job selection policy
• Location policy: probe random receiver, if still receiver, 

transfer job, else try another

11

Computer Science Lecture 4, page CS677: Distributed OS

Sprite (Berkeley)

• Workstation environment => owner is king!
• Centralized information policy: coordinator keeps info

– State-change driven information policy
– Receiver: workstation with no keyboard/mouse activity for 30 

seconds and # active processes < number of processors
• Selection policy: manually done by user => workstation 

becomes sender
• Location policy: sender queries coordinator
• WS with foreign process becomes sender if user 

becomes active: selection policy=> home workstation

12



Computer Science Lecture 4, page CS677: Distributed OS

Sprite (contd)

• Sprite process migration
– Facilitated by the Sprite file system
– State transfer

• Swap everything out
• Send page tables and file descriptors to receiver
• Demand page process in
• Only dependencies are communication-related

– Redirect communication from home WS to receiver

13


