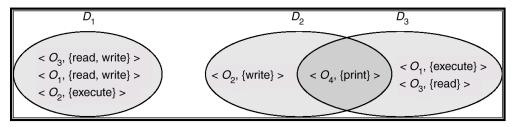
Today: Protection

- Goals of Protection
- Domain of Protection
- Access Matrix
- Implementation of Access Matrix
- Revocation of Access Rights
- Capability-Based Systems
- Language-Based Protection

Operating System Concepts

Lecture 27, page 1


Protection

- Operating system consists of a collection of objects, hardware or software
- Each object has a unique name and can be accessed through a well-defined set of operations.
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so.

Domain Structure

- Access-right = <object-name, rights-set> where rights-set is a subset of all valid operations that can be performed on the object.
- Domain = set of access-rights

Operating System Concepts

Lecture 27, page 3

Domain Implementation (UNIX)

- System consists of 2 domains:
 - User
 - Supervisor
- UNIX
 - Domain = user-id
 - Domain switch accomplished via file system.
 - Each file has associated with it a domain bit (setuid bit).
 - When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.

Operating System Concepts

Lecture 27, page 4

Domain Implementation (Multics)

- Let D_i and D_j be any two domain rings.
- If $j < I \Rightarrow D_i \subseteq D_j$

Multics Rings
Operating System Concepts

Lecture 27, page 5

Access Matrix

- View protection as a matrix (access matrix)
- Rows represent domains
- Columns represent objects
- Access(i, j) is the set of operations that a process executing in Domain; can invoke on Object;

Access Matrix

object domain	F ₁	F ₂	F ₃	printer
<i>D</i> ₁	read		read	
D_2				print
D_3		read	execute	
D_4	read write		read write	

Figure A

Operating System Concepts

Lecture 27, page 7

Use of Access Matrix

- If a process in Domain D_i tries to do "op" on object O_j , then "op" must be in the access matrix.
- Can be expanded to dynamic protection.
 - Operations to add, delete access rights.
 - Special access rights:
 - owner of O_i
 - copy op from O_i to O_i
 - $control D_i$ can modify D_j access rights
 - $transfer switch from domain D_i to D_j$

Use of Access Matrix (Cont.)

- Access matrix design separates mechanism from policy.
 - Mechanism
 - Operating system provides access-matrix + rules.
 - If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced.
 - Policy
 - User dictates policy.
 - Who can access what object and in what mode.

Operating System Concepts

Lecture 27, page 9

Implementation of Access Matrix

• Each column = Access-control list for one object Defines who can perform what operation.

```
Domain 1 = \text{Read}, Write
Domain 2 = Read
Domain 3 = Read
```

• Each Row = Capability List (like a key) For each domain, what operations allowed on what objects.

```
Object 1 – Read
Object 4 – Read, Write, Execute
Object 5 – Read, Write, Delete, Copy
```


Revocation of Access Rights

- Access List Delete access rights from access list.
 - Simple
 - Immediate
- *Capability List* Scheme required to locate capability in the system before capability can be revoked.

Operating System Concepts

Lecture 27, page 11

Capability-Based Systems

- Hydra
 - Fixed set of access rights known to and interpreted by the system.
 - Interpretation of user-defined rights performed solely by user's program; system provides access protection for use of these rights.
- Cambridge CAP System
 - Data capability provides standard read, write, execute of individual storage segments associated with object.
 - Software capability -interpretation left to the subsystem, through its protected procedures.

Language-Based Protection

- Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources.
- Language implementation can provide software for protection enforcement when automatic hardwaresupported checking is unavailable.
- Interpret protection specifications to generate calls on whatever protection system is provided by the hardware and the operating system.

Operating System Concepts

Lecture 27, page 13

Protection in Java 2

- Protection is handled by the Java Virtual Machine (JVM)
- A class is assigned a protection domain when it is loaded by the JVM.
- The protection domain indicates what operations the class can (and cannot) perform.
- If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the operation can be performed by the library.

Course Wrap-up and Review

Final Exam covers:

- 50% of the exam is on I/O systems and distributed systems
- 50% of the exam is on the rest of the course

CS377: Operating Systems

Lecture 27, page 15

Highlights of Process Management

- 1. What is a context switch? What happens during a context switch? What causes a context switch to occur?
- 2. What is the difference between a process and a thread?
- 3. What are FCFS, Round Robin, SJF, and Multilevel Feedback Queue algorithms?
- 4. What is an I/O bound process? What is a CPU bound process? Is there any reason to treat them differently for scheduling purposes?
- 5. What is a semaphore? What are the three things a semaphore can be used for?
- 6. What is a monitor? What is a condition variable?
- 7. What is busy waiting?
- 8. What are the four necessary conditions for deadlock to occur?
- 9. What is the difference between deadlock detection and deadlock prevention?
- 10. After detecting deadlock, what options are conceivable for recovering from deadlock?

Highlights of Memory and I/O Management What is virtual memory and why do we use it?

- 1.
- 2. What is paging, a page?
- 3. What does the OS store in the page table?
- 4. What is a TLB? How is one used?
- What is a page fault, how does the OS know it needs to take one, and what does the 5. OS do when a page fault occurs?
- Page replacement algorithms: FIFO, MIN, LRU, Second chance. For each understand 6. how they work, advantages and disadvantages.
- 7. How does the OS communicate with I/O devices?
- 8. What are I/O buffers used for?
- 9. What are I/O caches used for? How do they affect reading and writing to I/O devices?
- 10. What is seek time?
- 11. What is rotational latency?
- 12. What is transfer time?
- Disk scheduling algorithms: FIFO, SSTF, SCAN, C-SCAN. How do they work, advantages and disadvantages.

CS377: Operating Systems

Lecture 27, page 17

Memory Management

Topics you should understand:

- What is virtual memory and why do we use it?
- Memory allocation strategies:
 - Contiguous allocation (first-fit and best-fit algorithms)
 - **Paging**
 - Segmentation
 - Paged segmentation

Memory Management (cont.)

For each strategy, understand these concepts:

- Address translation
- Hardware support required
- Coping with fragmentation
- Ability to grow processes
- Ability to share memory with other processes
- Ability to move processes
- Memory protection
- What needs to happen on a context switch to support memory management

CS377: Operating Systems

Lecture 27, page 19

File Systems

Topics you should understand:

- 1. What is a file, a file type?
- 2. What types of access are typical for files?
- 3. What does the OS do on a file open, file close?
- 4. What is a directory?
- 5. What is a link?
- 6. What happens if the directory structure is a graph?
- 7. How does an OS support multiple users of shared files?
- 8. Strategies for laying files out on disk. Advantages and disadvantages.
 - a) Contiguous allocation
 - b) Linked
 - c) Indexed

I/O Systems

Topics you should understand

- Direct Memory Access
- Polling and Interrupts
- Caching and Buffering

CS377: Operating Systems

Lecture 27, page 21

Distributed Systems

- 1. What is the difference between a distributed system and a parallel system?
- 2. What advantages do distributed systems have over isolated systems?
- 3. What advantages do isolated systems have over distributed systems?

Networks

- 1. What is a LAN?
- 2. What is a WAN?
- 3. What are common network topologies? Which are most suitable to WANs? Which to LANs?
- 4. How do node failures affect the different network topologies?
- 5. What are the expected communication costs for the different network topologies?
- 6. What are packets?
- 7. What is a network protocol stack? What is TCP/IP?

CS377: Operating Systems

Lecture 27, page 23

Distributed sharing

- 1. What is data migration? When would you use it?
- 2. What is computation migration? When would you use it?
- 3. What is job migration? When would you use it?

Remote Procedure Call

- 1. What is RPC?
- 2. How does RPC differ from normal procedure call?
- 3. What extra computation is required to do RPC instead of a normal procedure call?
- 4. Would you ever use RPC to communicate between two processes on the same machine?

CS377: Operating Systems

Lecture 27, page 25

Distributed file systems

- 1. What are location transparent names?
- 2. What are location independent names?
- 3. What does it mean to say that a distributed file system has a single (global) namespace?
- 4. What is a cache?
- 5. What are the advantages of using a cache in a distributed file system? What are the disadvantages?
- 6. What are the advantages and disadvantages of write-back and write-through caches?

Protection

- 1. What is protection and how does it differ from security?
- 2. What is a domain?
- 3. What is a domain access matrix? How are these implemented in actual operating systems?
- 4. How can entries in an access matrix be modified? What is a domain switch and why is it needed?

CS377: Operating Systems

Lecture 27, page 27

General Skills

- You should have a good sense of how the pieces fit together and how changes in one part of the OS might impact another.
- You will **not** be asked to read or write Java code.
- You will **not** be asked detailed questions about any specific operating system such as Unix, Windows NT.

Sermons in Computer Science

- Simplicity
- Performance
- Programming as Craft
- Information is Property
- Stay Broad

CS377: Operating Systems

Lecture 27, page 29