
Computer Science Lecture 21, page 1 Computer Science CS377: Operating Systems

Today: I/O Systems!
•  How does I/O hardware influence the OS?
•  What I/O services does the OS provide?
•  How does the OS implement those services?
•  How can the OS improve the performance of I/O?

Computer Science Lecture 21, page 2 Computer Science CS377: Operating Systems

Architecture of I/O Systems!
•  Key components

–  System bus: allows the device to communicate with the CPU, typically
shared by multiple devices.

–  A device port typically consisting of 4 registers:
•  Status indicates a device busy, data ready, or error condition
•  Control: command to perform
•  Data-in: data being sent from the device to the CPU
•  Data-out: data being sent from the CPU to the device

–  Controller: receives commands from the system bus, translates them into
device actions, and reads/writes data onto the system bus.

–  The device itself

•  Traditional devices: disk drive, printer, keyboard, modem, mouse,
display

•  Non-traditional devices: joystick, robot actuators, flying surfaces
of an airplane, fuel injection system of a car, ...

Computer Science Lecture 21, page 3 Computer Science

PCI Bus Structure !

CS377: Operating Systems

Computer Science Lecture 21, page 4 Computer Science

Kernel I/O Subsystem!

CS377: Operating Systems

Computer Science Lecture 21, page 5 Computer Science

Device I/O Port location on PCs!

CS377: Operating Systems

Computer Science Lecture 21, page 6 Computer Science CS377: Operating Systems

I/O Services Provided by OS!
•  Naming of files and devices. (On Unix, devices appear as files in

the /dev directory)
•  Access control.
•  Operations appropriate to the files and devices.
•  Device allocation.
•  Buffering, caching, and spooling to allow efficient communication

with devices.
•  I/O scheduling.
•  Error handling and failure recovery associated with devices

(command retries, for example).
•  Device drivers to implement device-specific behaviors.

Computer Science Lecture 21, page 7 Computer Science CS377: Operating Systems

Communication using Polling!
•  CPU busy-waits until the status is idle.
•  CPU sets the command register and data-out if it is an output operation.
•  CPU sets status to command-ready => controller sets status to busy.
•  Controller reads the command register and performs the command, placing a

value in data-in if it is an input command.
•  If the operation succeeds, the controller changes the status to idle.
•  CPU observes the change to idle and reads the data if it was an input operation.
•  Good choice if data must be handled promptly, like for a modem or keyboard.
•  What happens if the device is slow compared to the CPU?

Computer Science Lecture 21, page 8 Computer Science CS377: Operating Systems

Communication using Interrupts!
•  Rather than using busy waiting, the device can interrupt the CPU

when it completes an I/O operation.
•  On an I/O interrupt:

–  Determine which device caused the interrupt.
–  If the last command was an input operation, retrieve the data from the

device register.
–  Start the next operation for that device.

Computer Science Lecture 21, page 9 Computer Science

Intel Pentium Event Vectors!

CS377: Operating Systems

Computer Science Lecture 21, page 10 Computer Science CS377: Operating Systems

Direct Memory Access!
•  For devices that transfer large volumes of data at a time (like a

disk block), it is expensive to have the CPU retrieve these one
byte at a time.

•  Solution: Direct memory access (DMA)
–  Use a sophisticated DMA controller that can write directly to memory.

Instead of data-in/data-out registers, it has an address register.
–  The CPU tells the DMA the locations of the source and destination of the

transfer.
–  The DMA controller operates the bus and interrupts the CPU when the

entire transfer is complete, instead of when each byte is ready.
–  The DMA controller and the CPU compete for the memory bus, slowing

down the CPU somewhat, but still providing better performance than if the
CPU had to do the transfer itself.

Computer Science Lecture 21, page 11 Computer Science CS377: Operating Systems

Application Programmer's View of I/O
Devices!

•  The OS provides a high-level interface to devices, greatly simplifying the
programmer's job.
–  Standard interfaces are provided for related devices.
–  Device dependencies are encapsulated in device drivers.
–  New devices can be supported by providing a new device driver.

•  Device characteristics:
–  Transfer unit: character or block
–  Access method: sequential or random access
–  Timing: synchronous or asynchronous.

•  Most devices are asynchronous, while I/O system calls are synchronous => The
OS implements blocking I/O

–  Sharable or dedicated
–  Speed
–  Operations: Input, output, or both
–  Examples: keyboard (sequential, character), disk (block, random or sequential)

Computer Science Lecture 21, page 12 Computer Science

Examples of I/O Device types!

CS377: Operating Systems

Computer Science Lecture 21, page 13 Computer Science

Block and Character devices!

•  Block devices include disk drives
–  Commands include read, write, seek
–  Raw I/O or file-system access
–  Memory-mapped file access possible

•  Character devices include keyboards, mice, serial ports
–  Commands include get, put
–  Libraries layered on top allow line editing

CS377: Operating Systems

Computer Science Lecture 21, page 14 Computer Science CS377: Operating Systems

I/O Buffering!
I/O devices typically contain a small on-board memory where they

can store data temporarily before transferring to/from the CPU.

•  A disk buffer stores a block when it is read from the disk.
•  It is transferred over the bus by the DMA controller into a buffer

in physical memory.
•  The DMA controller interrupts the CPU when the transfer is done.

Computer Science Lecture 21, page 15 Computer Science CS377: Operating Systems

Why buffer on the OS side?!
•  To cope with speed mismatches between device and CPU.

–  Example: Compute the contents of a display in a buffer (slow) and then zap
the buffer to the screen (fast)

•  To cope with devices that have different data transfer sizes.
–  Example: ftp brings the file over the network one packet at a time. Stores

to disk happen one block at a time.

•  To minimize the time a user process is blocked on a write.
–  Writes => copy data to a kernel buffer and return control to the user

program. The write from the kernel buffer to the disk is done later.

Computer Science Lecture 21, page 16 Computer Science CS377: Operating Systems

Caching!
•  Improve disk performance by reducing the number of disk

accesses.
–  Idea: keep recently used disk blocks in main memory after the I/O call that brought

them into memory completes.
–  Example: Read (diskAddress)

 If (block in memory) return value from memory
 Else ReadSector(diskAddress)

–  Example: Write (diskAddress)
 If (block in memory) update value in memory
 Else Allocate space in memory, read block from disk, and update value in memory

•  What should happen when we write to a cache?
–  write-through policy (write to all levels of memory containing the block, including

to disk). High reliability.
–  write-back policy (write only to the fastest memory containing the block, write to

slower memories and disk sometime later). Faster.

Computer Science Lecture 21, page 17 Computer Science CS377: Operating Systems

Putting the Pieces Together - a Typical
Read Call!

1.  User process requests a read from a device.
2.  OS checks if data is in a buffer. If not,

a)  OS tells the device driver to perform input.
b)  Device driver tells the DMA controller what to do and blocks itself.
c)  DMA controller transfers the data to the kernel buffer when it has all been

retrieved from the device.
d)  DMA controller interrupts the CPU when the transfer is complete.

3.  OS transfers the data to the user process and places the process
in the ready queue.

4.  When the process gets the CPU, it begins execution following
the system call.

Computer Science Lecture 21, page 18 Computer Science

Steps in DMA transfer!

CS377: Operating Systems

Computer Science Lecture 21, page 19 Computer Science

I/O request Lifecycle!

CS377: Operating Systems

Computer Science Lecture 21, page 20 Computer Science CS377: Operating Systems

Summary!
•  I/O is expensive for several reasons:

–  Slow devices and slow communication links
–  Contention from multiple processes.
–  I/O is typically supported via system calls and interrupt handling, which are

slow.

•  Approaches to improving performance:
–  Reduce data copying by caching in memory
–  Reduce interrupt frequency by using large data transfers
–  Offload computation from the main CPU by using DMA controllers.
–  Increase the number of devices to reduce contention for a single device and

thereby improve CPU utilization.
–  Increase physical memory to reduce amount of time paging and thereby

improve CPU utilization.

Computer Science Lecture 21, page 21 Computer Science CS377: Operating Systems

Exam Review!
Deadlocks

 Deadlock detection, avoidance, bankers algorithm
Memory Management

Computer Science Lecture 21, page 22 Computer Science CS377: Operating Systems

Deadlocks!
Topics you should understand:

1.  What are the four necessary conditions for deadlock to occur?
2.  What is the difference between deadlock detection and deadlock

prevention?
3.  After detecting deadlock, what options are conceivable for

recovering from deadlock?
4.  What is a safe state? What is the difference between an unsafe

state and a deadlocked state?

Computer Science Lecture 21, page 23 Computer Science CS377: Operating Systems

Deadlocks!
Things you should be able to do:
1.  Given some code, reason about whether or not it is possible for deadlock to

occur.
2.  Given a state consisting of resources allocated to processes, processes waiting

on resources, and available resources, determine if the processes are
deadlocked.

3.  Given a state consisting of resources allocated to processes, maximum
resource requirements of processes, and available resources, determine if the
state could lead to deadlock.

4.  Given a state consisting of resources allocated to processes, maximum
resource requirements of processes, and available resources, and a request for
additional resources from a process, determine if the request can be safely
satisfied.

5.  Given some code that might deadlock, describe how you might change the
algorithm to prevent deadlock.

Computer Science Lecture 21, page 24 Computer Science

Memory Management!

Topics you should understand:
1.  What is virtual memory and why do we use it?
2.  Memory allocation strategies:

–  Contiguous allocation (first-fit and best-fit algorithms)
–  Paging
–  Segmentation
–  Paged segmentation

CS377: Operating Systems

Computer Science Lecture 21, page 25 Computer Science CS377: Operating Systems

Memory Management (cont.)!
For each strategy, understand these concepts:
•  Address translation
•  Hardware support required
•  Coping with fragmentation
•  Ability to grow processes
•  Ability to share memory with other processes
•  Ability to move processes
•  Memory protection
•  What needs to happen on a context switch to support memory

management

Computer Science Lecture 21, page 26 Computer Science CS377: Operating Systems

Memory Management (cont.)!
Things you should be able to do:

•  Given a request for memory, determine how the request can be
satisfied using contiguous allocation.

•  Given a virtual address and the necessary tables, determine the
corresponding physical address.

Computer Science Lecture 21, page 27 Computer Science CS377: Operating Systems

Paging!
Topics you should understand:

•  What is paging, a page, a page frame?
•  What does the OS store in the page table?
•  What is a TLB? How is one used?
•  What is demand paging?
•  What is a page fault, how does the OS know it needs to take one,

and what does the OS do when a page fault occurs?

Computer Science Lecture 21, page 28 Computer Science CS377: Operating Systems

Paging (cont.)!
•  Page replacement algorithms. For each understand how they

work, advantages, disadvantages, and hardware requirements.
1.  FIFO
2.  MIN
3.  LRU
4.  Second chance
5.  Enhanced second chance

•  How do global and per-process (aka local) allocation differ?
•  What is temporal locality? What is spatial locality? What effect

do these have on the performance of paging?
•  What is a working set?

Computer Science Lecture 21, page 29 Computer Science CS377: Operating Systems

Paging (cont.)!
•  What is thrashing and what are strategies to eliminate it?
•  What considerations influence the page size that should be used?

Things you should be able to do:

1.  Given a page reference string and a fixed number of page
frames, determine how the different replacement algorithms
would handle the page faults.

Computer Science Lecture 21, page 30 Computer Science CS377: Operating Systems

File Systems!
Topics you should understand:

1.  What is a file, a file type?
2.  What types of access are typical for files?
3.  What does the OS do on a file open, file close?
4.  What is a directory?
5.  What is a link?
6.  What happens if the directory structure is a graph?
7.  How does an OS support multiple users of shared files?
8.  Strategies for laying files out on disk. Advantages and disadvantages.

a)  Contiguous allocation
b)  Linked
c)  Indexed

Computer Science Lecture 21, page 31 Computer Science CS377: Operating Systems

I/O Systems!
Topics you should understand

•  Direct Memory Access

•  Polling and Interrupts

•  Caching and Buffering

Computer Science Lecture 21, page 32 Computer Science CS377: Operating Systems

General Skills!
•  You should have a good sense of how the pieces fit together and

how changes in one part of the OS might impact another.

•  You will not be asked to read or write C++ code.

•  You will not be asked detailed questions about any specific
operating system, such as Unix, Nachos, Windows NT, ...

