
Computer Science Lecture 14, page 1 Computer Science CS377: Operating Systems

Last Class: Memory Management!
•  Uniprogramming
•  Static Relocation
•  Dynamic Relocation

Computer Science Lecture 14, page 2 Computer Science CS377: Operating Systems

Today: Paging!
Processes typically do not use their entire space in memory all the

time.
Paging
1.  divides and assigns processes to fixed sized pages,
2.  then selectively allocates pages to frames in memory, and
3.  manages (moves, removes, reallocates) pages in memory.

Computer Science Lecture 14, page 3 Computer Science CS377: Operating Systems

Paging: Motivation & Features!
90/10 rule: Processes spend 90% of their time accessing 10% of

their space in memory.
=> Keep only those parts of a process in memory that are actually

being used
•  Pages greatly simplify the hole fitting problem
•  The logical memory of the process is contiguous, but pages need

not be allocated contiguously in memory.
•  By dividing memory into fixed size pages, we can eliminate

external fragmentation.
•  Paging does not eliminate internal fragmentation (1/2 page per

process)

Computer Science Lecture 14, page 4 Computer Science CS377: Operating Systems

Paging: Example!
Mapping pages in logical mem to frames in physical memory

Computer Science Lecture 14, page 5 Computer Science CS377: Operating Systems

Paging Hardware!
•  Problem: How do we find addresses when pages are not allocated

contiguously in memory?
•  Virtual Address:

–  Processes use a virtual (logical) address to name memory locations.
–  Process generates contiguous, virtual addresses from 0 to size of the

process.
–  The OS lays the process down on pages and the paging hardware translates

virtual addresses to actual physical addresses in memory.
–  In paging, the virtual address identifies the page and the page offset.
–  page table keeps track of the page frame in memory in which the page is

located.

Computer Science Lecture 14, page 6 Computer Science CS377: Operating Systems

Paging Hardware!
Translating a virtual address to physical address

Computer Science Lecture 14, page 7 Computer Science CS377: Operating Systems

Paging Hardware!
•  Paging is a form of dynamic relocation, where each virtual address

is bound by the paging hardware to a physical address.
•  Think of the page table as a set of relocation registers, one for

each frame.
•  Mapping is invisible to the process; the OS maintains the mapping

and the hardware does the translation.
•  Protection is provided with the same mechanisms as used in

dynamic relocation.

Computer Science Lecture 14, page 8 Computer Science CS377: Operating Systems

Paging Hardware: Practical Details!
•  Page size (frame sizes) are typically a power of 2 between 512

bytes and 8192 bytes per page.
•  Powers of 2 make the translation of virtual addresses into physical

addresses easier. For example, given
•  virtual address space of size 2m bytes and a page of size 2n, then
•  the high order m-n bits of a virtual address select the page,
•  the low order n bits select the offset in the page

Computer Science Lecture 14, page 9 Computer Science CS377: Operating Systems

Address Translation Example!

Computer Science Lecture 14, page 10 Computer Science CS377: Operating Systems

Address Translation Example!
•  How big is the page table?

•  How many bits for an address. Assume we can address 1 byte
increments?

•  What part is p, and d?

•  Given virtual address 24, do the virtual to physical translation.

Computer Science Lecture 14, page 11 Computer Science CS377: Operating Systems

Address Translation Example!
•  How many bits for an address? Assume we can address only 1

word (4 byte) increments?

•  What part is p, and d?

•  Given virtual address 13, do the virtual to physical translation.

•  What needs to happen on a context switch?

Computer Science Lecture 14, page 12 Computer Science CS377: Operating Systems

Making Paging Efficient!
How should we store the page table?
•  Registers: Advantages? Disadvantages?
•  Memory: Advantages? Disadvantages?
•  TLB: a fast fully associative memory that stores page numbers

(key) and the frame (value) in which they are stored.
–  if memory accesses have locality, address translation has locality too.
–  typical TLB sizes range from 8 to 2048 entries.

Computer Science Lecture 14, page 13 Computer Science CS377: Operating Systems

The Translation Look-aside Buffer
(TLB)!

v: valid bit that says the entry is up-to-date

Computer Science Lecture 14, page 14 Computer Science CS377: Operating Systems

Costs of Using The TLB!
•  What is the effective memory access cost if the page table is in

memory?

•  What is the effective memory access cost with a TLB?

A large TLB improves hit ratio, decreases average memory cost.

Computer Science Lecture 14, page 15 Computer Science CS377: Operating Systems

Initializing Memory when Starting a
Process!

1.  Process needing k pages arrives.
2.  If k page frames are free, then allocate these frames to pages.

Else free frames that are no longer needed.
3.  The OS puts each page in a frame and then puts the frame

number in the corresponding entry in the page table.
4.  OS marks all TLB entries as invalid (flushes the TLB).
5.  OS starts process.
6.  As process executes, OS loads TLB entries as each page is

accessed, replacing an existing entry if the TLB is full.

Computer Science Lecture 14, page 16 Computer Science CS377: Operating Systems

Saving/Restoring Memory on a Context
Switch!

•  The Process Control Block (PCB) must be extended to contain:
–  The page table
–  Possibly a copy of the TLB

•  On a context switch:
1.  Copy the page table base register value to the PCB.
2.  Copy the TLB to the PCB (optionally).
3.  Flush the TLB.
4.  Restore the page table base register.
5.  Restore the TLB if it was saved.

•  Multilevel Paging: If the virtual address space is huge, page
tables get too big, and many systems use a multilevel paging
scheme (refer OSC for details)

Computer Science Lecture 14, page 17 Computer Science CS377: Operating Systems

Sharing!
Paging allows sharing of memory across processes, since memory used by a

process no longer needs to be contiguous.
•  Shared code must be reentrant, that means the processes that are using it cannot

change it (e.g., no data in reentrant code).
•  Sharing of pages is similar to the way threads share text and memory with each

other.
•  A shared page may exist in different parts of the virtual address space of each

process, but the virtual addresses map to the same physical address.
•  The user program (e.g., emacs) marks text segment of a program as reentrant

with a system call.
•  The OS keeps track of available reentrant code in memory and reuses them if a

new process requests the same program.
•  Can greatly reduce overall memory requirements for commonly used

applications.

Computer Science Lecture 14, page 18 Computer Science CS377: Operating Systems

Summary!
•  Paging is a big improvement over segmentation:

–  They eliminate the problem of external fragmentation and therefore the
need for compaction.

–  They allow sharing of code pages among processes, reducing overall
memory requirements.

–  They enable processes to run when they are only partially loaded in main
memory.

•  However, paging has its costs:
–  Translating from a virtual address to a physical address is more time-

consuming.
–  Paging requires hardware support in the form of a TLB to be efficient

enough.
–  Paging requires more complex OS to maintain the page table.

