
Computer Science Lecture 11, page 1 Computer Science CS377: Operating Systems

Last Class: Synchronization
Problems!

•  Reader Writer
–  Multiple readers, single writer
–  In practice, use read-write locks

•  Dining Philosophers
–  Need to hold multiple resources to perform task

Computer Science Lecture 11, page 2 Computer Science CS377: Operating Systems

Real-world Examples!

•  Producer-consumer
–  Audio-Video player: network and display threads; shared buffer
–  Web servers: master thread and slave thread

•  Reader-writer
–  Banking system: read account balances versus update

•  Dining Philosophers
–  Cooperating processes that need to share limited resources

•  Set of processes that need to lock multiple resources
–  Disk and tape (backup),

•  Travel reservation: hotel, airline, car rental databases

Computer Science Lecture 11, page 3 Computer Science CS377: Operating Systems

Today: Deadlocks!
•  What are deadlocks?

•  Conditions for deadlocks

•  Deadlock prevention

•  Deadlock detection

Computer Science Lecture 11, page 4 Computer Science CS377: Operating Systems

Deadlocks!
•  Deadlock: A condition where two or more threads are waiting for

an event that can only be generated by these same threads.
•  Example:

 Process A: Process B:
 printer.Wait(); disk.Wait();
 disk.Wait(); printer.Wait();

 // copy from disk // copy from disk
 // to printer // to printer

 printer.Signal(); printer.Signal();
 disk.Signal(); disk.Signal();

Computer Science Lecture 11, page 5 Computer Science CS377: Operating Systems

Deadlocks: Terminology!
•  Deadlock can occur when several threads compete for a finite

number of resources simultaneously
•  Deadlock prevention algorithms check resource requests and

possibly availability to prevent deadlock.
•  Deadlock detection finds instances of deadlock when threads stop

making progress and tries to recover.
•  Starvation occurs when a thread waits indefinitely for some

resource, but other threads are actually using it (making progress).
 => Starvation is a different condition from deadlock

Computer Science Lecture 11, page 6 Computer Science CS377: Operating Systems

Necessary Conditions for Deadlock!
Deadlock can happen if all the following conditions hold.

•  Mutual Exclusion: at least one thread must hold a resource in
non-sharable mode, i.e., the resource may only be used by one
thread at a time.

•  Hold and Wait: at least one thread holds a resource and is
waiting for other resource(s) to become available. A different
thread holds the resource(s).

•  No Preemption: A thread can only release a resource voluntarily;
another thread or the OS cannot force the thread to release the
resource.

•  Circular wait: A set of waiting threads {t1, ..., tn} where ti is
waiting on ti+1 (i = 1 to n) and tn is waiting on t1.

Computer Science Lecture 11, page 7 Computer Science CS377: Operating Systems

Deadlock Detection Using a Resource
Allocation Graph!

•  We define a graph with vertices that represent both resources
{r1, ..., rm} and threads {t1, ..., tn}.
–  A directed edge from a thread to a resource, ti ! rj indicates that ti has

requested that resource, but has not yet acquired it (Request Edge)
–  A directed edge from a resource to a thread rj ! ti indicates that the OS has

allocated rj to ti (Assignment Edge)

•  If the graph has no cycles, no deadlock exists.
•  If the graph has a cycle, deadlock might exist.

Computer Science Lecture 11, page 8 Computer Science CS377: Operating Systems

Deadlock Detection Using a Resource
Allocation Graph!

•  What if there are multiple interchangeable instances of a resource?
–  Then a cycle indicates only that deadlock might exist.
–  If any instance of a resource involved in the cycle is held by a thread not in

the cycle, then we can make progress when that resource is released.

Computer Science Lecture 11, page 9 Computer Science CS377: Operating Systems

Detect Deadlock and Then Correct It!
•  Scan the resource allocation graph for cycles, and then break the cycles.
•  Different ways of breaking a cycle:

–  Kill all threads in the cycle.
–  Kill the threads one at a time, forcing them to give up resources.
–  Preempt resources one at a time rolling back the state of the thread holding the

resource to the state it was in prior to getting the resource. This technique is
common in database transactions.

•  Detecting cycles takes O(n2) time, where n is |T| + |R|. When should we execute
this algorithm?
–  Just before granting a resource, check if granting it would lead to a cycle?

(Each request is then O(n2).)
–  Whenever a resource request can't be filled? (Each failed request is O(n2).)
–  On a regular schedule (hourly or ...)? (May take a long time to detect

deadlock)
–  When CPU utilization drops below some threshold? (May take a long time

to detect deadlock)
•  What do current OS do?

–  Leave it to the programmer/application.

Computer Science Lecture 11, page 10 Computer Science CS377: Operating Systems

Deadlock Prevention!
Prevent deadlock: ensure that at least one of the necessary

conditions doesn't hold.
1. Mutual Exclusion: make resources sharable (but not all resources

can be shared)
2.  Hold and Wait:

–  Guarantee that a thread cannot hold one resource when it requests another
–  Make threads request all the resources they need at once and make the

thread release all resources before requesting a new set.
3.  No Preemption:

–  If a thread requests a resource that cannot be immediately allocated to it,
then the OS preempts (releases) all the resources that the thread is currently
holding.

–  Only when all of the resources are available, will the OS restart the thread.
–  Problem: not all resources can be easily preempted, like printers.

4.  Circular wait: impose an ordering (numbering) on the resources
and request them in order.

Computer Science Lecture 11, page 11 Computer Science CS377: Operating Systems

Deadlock Prevention with Resource
Reservation!

•  Threads provide advance information about the maximum
resources they may need during execution

•  Define a sequence of threads {t1, ..., tn} as safe if for each ti, the
resources that ti can still request can be satisfied by the currently
available resources plus the resources held by all tj, j < i.

•  A safe state is a state in which there is a safe sequence for the
threads.

•  An unsafe state is not equivalent to deadlock, it just may lead to
deadlock, since some threads might not actually use the maximum
resources they have declared.

•  Grant a resource to a thread is the new state is safe
•  If the new state is unsafe, the thread must wait even if the resource

is currently available.
•  This algorithm ensures no circular-wait condition exists.

Computer Science Lecture 11, page 12 Computer Science CS377: Operating Systems

Example!
• Threads t1, t2, and t3 are competing for 12 tape drives.
• Currently, 11 drives are allocated to the threads, leaving 1 available.
• The current state is safe (there exists a safe sequence, {t1, t2, t3} where all threads may
obtain their maximum number of resources without waiting)

–  t1 can complete with the current resource allocation
–  t2 can complete with its current resources, plus all of t1's resources, and the unallocated tape

drive.
• t3 can complete with all its current resources, all of t1 and t2's resources, and the unallocated
tape drive.

max
need

in use could
want

t1 4 3 1
t2 8 4 4
t3 12 4 8

Computer Science Lecture 11, page 13 Computer Science CS377: Operating Systems

Example (contd)!

• If t3 requests one more drive, then it must wait because allocating the drive would
lead to an unsafe state.
• There are now 0 available drives, but each thread might need at least one more
drive.

max
need

in use could
want

t1 4 3 1

t2 8 4 4

t3 12 5 7

Computer Science Lecture 11, page 14 Computer Science CS377: Operating Systems

Deadlock Avoidance using
Resource Allocation Graph!

•  Claim edges: an edge from a thread to a resource that may be requested in the
future

•  Satisfying a request results in converting a claim edge to an allocation edge and
changing its direction.

•  A cycle in this extended resource allocation graph indicates an unsafe state.
•  If the allocation would result in an unsafe state, the allocation is denied even if

the resource is available.
–  The claim edge is converted to a request edge and the thread waits.

•  This solution does not work for multiple instances of the same resource.

Computer Science Lecture 11, page 15 Computer Science CS377: Operating Systems

Banker's Algorithm!
•  This algorithm handles multiple instances of the same resource.
•  Force threads to provide advance information about what

resources they may need for the duration of the execution.
•  The resources requested may not exceed the total available in the

system.
•  The algorithm allocates resources to a requesting thread if the

allocation leaves the system in a safe state.
•  Otherwise, the thread must wait.

Computer Science Lecture 11, page 16 Computer Science CS377: Operating Systems

Preventing Deadlock with Banker's
Algorithm!

class ResourceManager {!
 int n; // # threads !
 int m; // # resources!
 int avail[m], // # of available resources of each type!
 max[n,m], // # of each resource that each thread may want!
 alloc[n,m], //# of each resource that each thread is using!
 need[n,m], // # of resources that each thread might still

request!

Computer Science Lecture 11, page 17 Computer Science CS377: Operating Systems

Banker's Algorithm:Resource Allocation!
 public void synchronized allocate (int request[m], int i) {
 // request contains the resources being requested
 // i is the thread making the request

 if (request > need[i]) //vector comparison
 error(); // Can't request more than you declared
 else while (request[i] > avail)
 wait(); // Insufficient resources available

 // enough resources exist to satisfy the requests
 // See if the request would lead to an unsafe state
 avail = avail - request; // vector additions
 alloc[i] = alloc[i] + request;
 need[i] = need[i] - request;

 while (!safeState ()) {
 // if this is an unsafe state, undo the allocation and wait
 <undo the changes to avail, alloc[i], and need[i]>
 wait ();
 <redo the changes to avail, alloc[i], and need[i]>
 } }

Computer Science Lecture 11, page 18 Computer Science CS377: Operating Systems

Banker's Algorithm: Safety Check!
private boolean safeState () {
 boolean work[m] = avail[m]; // accommodate all resources
 boolean finish[n] = false; // none finished yet

 // find a process that can complete its work now
 while (find i such that finish[i] == false
 and need[i] <= work) { // vector operations
 work = work + alloc[i]
 finish[i] = true;
 }

 if (finish[i] == true for all i)
 return true;
 else
 return false;
}

•  Worst case: requires O(mn2) operations to determine if the system
is safe.

Computer Science Lecture 11, page 19 Computer Science CS377: Operating Systems

Example using Banker's Algorithm!

System snapshot:

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1

P1 1 7 5 1 0 0

P2 2 3 5 1 3 5

P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

Computer Science Lecture 11, page 20 Computer Science CS377: Operating Systems

Example (contd)!

• How many resources are there of type (A,B,C)?

• What is the contents of the Need matrix?

• Is the system in a safe state? Why?

A B C
P0

P1

P2

P3

Computer Science Lecture 11, page 21 Computer Science CS377: Operating Systems

Example: solutions!

• How many resources of type (A,B,C)? (3,14,11)
 resources = total + avail
• What is the contents of the need matrix?

 Need = Max - Allocation.

• Is the system in a safe state? Why?
• Yes, because the processes can be executed in the sequence P0, P2, P1, P3, even if each
process asks for its maximum number of resources when it executes.

A B C
P0 0 0 0
P1 0 7 5
P2 1 0 0
P3 0 0 2

Computer Science Lecture 11, page 22 Computer Science CS377: Operating Systems

Example (contd)!
• If a request from process P1 arrives for additional resources of (0,5,2), can the
Banker's algorithm grant the request immediately?
• What would be the new system state after the allocation?

• What is a sequence of process execution that satisfies the safety constraint?

Max Allocation Need Available
A B C A B C A B C A B C

P0 0 0 1
P1 1 7 5
P2 2 3 5
P3 0 6 5

Total

Computer Science Lecture 11, page 23 Computer Science CS377: Operating Systems

Example: solutions!
•  If a request from process P1 arrives for additional resources of (0,5,2), can the Banker's

algorithm grant the request immediately? Show the system state, and other criteria.
 Yes. Since
1.  (0,5,2) " (1,5,2), the Available resources, and
2.  (0,5,2) + (1,0,0) = (1,5,2) " (1,7,5), the maximum number P1 can request.
3.  The new system state after the allocation is:

and the sequence P0, P2, P1, P3 satisfies the safety constraint.

Allocation Max Available
A B C A B C A B C

P0 0 0 1 0 0 1
P1 1 5 2 1 7 5
P2 1 3 5 2 3 5
P3 0 6 3 0 6 5

1 0 0

Computer Science Lecture 11, page 24 Computer Science CS377: Operating Systems

Summary!
•  Deadlock: situation in which a set of threads/processes cannot

proceed because each requires resources held by another member
of the set.

•  Detection and recovery: recognize deadlock after it has occurred
and break it.

•  Avoidance: don't allocate a resource if it would introduce a cycle.
•  Prevention: design resource allocation strategies that guarantee

that one of the necessary conditions never holds
•  Code concurrent programs very carefully. This only helps prevent

deadlock over resources managed by the program, not OS
resources.

•  Ignore the possibility! (Most OSes use this option!!)

