
Computer Science Lecture 8, page 1 Computer Science CS377: Operating Systems

Last Class: Synchronization!

•  Wrap-up on CPU scheduling
– MLFQ and Lottery scheduling

•  Synchronization
–  Mutual exclusion
–  Critical sections

•  Example: Too Much Milk
•  Locks
•  Synchronization primitives are required to ensure that only one thread executes in
a critical section at a time.

Computer Science Lecture 8, page 2 Computer Science CS377: Operating Systems

Today: Synchronization: Locks and
Semaphores!

•  More on hardware support for synchronization

•  Implementing locks using disabling interrupts, test&set and busy
waiting

•  What are semaphores?
–  Semaphores are basically generalized locks.
–  Like locks, semaphores are a special type of variable that supports two

atomic operations and offers elegant solutions to synchronization problems.
–  They were invented by Dijkstra in 1965.

Computer Science Lecture 8, page 3 Computer Science CS377: Operating Systems

Hardware Support for Synchronization!

• Implementing high level primitives requires low-level hardware support
• What we have and what we want

Concurrent programs

Low-level atomic
operations (hardware)

load/store interrupt disable test&set

High-level atomic
operations (software)

lock semaphore
monitors send & receive

Computer Science Lecture 8, page 4 Computer Science CS377: Operating Systems

Implementing Locks By Disabling
Interrupts!

•  There are two ways the CPU scheduler gets control:
–  Internal Events: the thread does something to relinquish control (e.g., I/O).
–  External Events: interrupts (e.g., time slice) cause the scheduler to take

control away from the running thread.
•  On uniprocessors, we can prevent the scheduler from getting

control as follows:
–  Internal Events: prevent these by not requesting any I/O operations during

a critical section.
–  External Events: prevent these by disabling interrupts (i.e., tell the

hardware to delay handling any external events until after the thread is
finished with the critical section)

•  Why not have the OS support Lock.Acquire() and Lock.Release as
system calls?

Computer Science Lecture 8, page 5 Computer Science CS377: Operating Systems

Implementing Locks by Disabling
Interrupts!

•  For uniprocessors, we can disable interrupts for high-level primitives like locks,
whose implementations are private to the kernel.

•  The kernel ensures that interrupts are not disabled forever, just like it already
does during interrupt handling.

class Lock {
 public:
 void Acquire();
 void Release();
 private:
 int value;
 Queue Q;
}
 Lock() {
 // lock is free
 value = 0;
 // queue is empty
 Q = 0;
}

Acquire(T Thread){
 disable interrupts;
 if (value == BUSY) {
 add T to Q
 T.Sleep();
 } else {
 value = BUSY;
 }
 enable interrupts; }

Release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q
 put T on ready queue
 } else {
 value = FREE
 }
 enable interrupts; }

Computer Science Lecture 8, page 6 Computer Science CS377: Operating Systems

Wait Queues!
When should Acquire re-enable interrupts when going to sleep?

•  Before putting the thread on the wait queue?
–  No, Release could check the queue, and not wake up the thread.

•  After putting the thread on the wait queue, but before going to
sleep?
–  No, Release could put the thread on the ready queue, but it could already be

on the ready queue. When the thread wakes up, it will go to sleep, missing
the wakeup from Release.

=>We still have a problem with multiprocessors.

Computer Science Lecture 8, page 7 Computer Science CS377: Operating Systems

Example!
•  When the sleeping thread wakes up, it returns from Sleep back to

Acquire.
•  Interrupts are still disabled, so its ok to check the lock value, and

if it is free, grab the lock and turn on interrupts.

Computer Science Lecture 8, page 8 Computer Science CS377: Operating Systems

Atomic read-modify-write Instructions!

•  Atomic read-modify-write instructions atomically read a value
from memory into a register and write a new value.
–  Straightforward to implement simply by adding a new instruction on a

uniprocessor.
–  On a multiprocessor, the processor issuing the instruction must also be able

to invalidate any copies of the value the other processes may have in their
cache, i.e., the multiprocessor must support some type of cache coherence.

•  Examples:
–  Test&Set: (most architectures) read a value, write ‘1’ back to memory.
–  Exchange: (x86) swaps value between register and memory.
–  Compare&Swap: (68000) read value, if value matches register value r1,

exchange register r2 and value.

Computer Science Lecture 8, page 9 Computer Science CS377: Operating Systems

Implementing Locks with Test&Set!
•  Test&Set: reads a value, writes ‘1’ to memory, and returns the old value.

class Lock { Acquire() {
 public: // if busy do nothing
 void Acquire(); while (test&set(value) == 1);
 void Release(); }
 private: Release() {
 int value; value = 0;
} }
Lock() {
 value = 0;
}

•  If lock is free (value = 0), test&set reads 0, sets value to 1, and returns 0. The
Lock is now busy: the test in the while fails, and Acquire is complete.

•  If lock is busy (value = 1), test&set reads 1, sets value to 1, and returns 1. The
while continues to loop until a Release executes.

Computer Science Lecture 8, page 10 Computer Science CS377: Operating Systems

Busy Waiting!
Acquire(){
 //if Busy, do nothing
 while (test&set(value) == 1);
}

•  What's wrong with the above implementation?
–  What is the CPU doing?
–  What could happen to threads with different priorities?

•  How can we get the waiting thread to give up the processor, so the
releasing thread can execute?

Computer Science Lecture 8, page 11 Computer Science CS377: Operating Systems

Locks using Test&Set with minimal
busy-waiting!

•  Can we implement locks with test&set without any busy-waiting or disabling
interrupts?

•  No, but we can minimize busy-waiting time by atomically checking the lock
value and giving up the CPU if the lock is busy

class Lock {
 // same declarations as earlier
 private int guard;
}
Acquire(T:Thread) {
 while (test&set(guard) == 1) ;
 if (value != FREE) {
 put T on Q;
 T->Sleep() & set guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 } }

Release() {
 // busy wait
 while (test&set(guard) == 1) ;
 if Q is not empty {
 take T off Q;
 put T on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;
}

Computer Science Lecture 8, page 12 Computer Science CS377: Operating Systems

Semaphores!
•  Semaphore: an integer variable that can be updated only using

two special atomic instructions.
•  Binary (or Mutex) Semaphore: (same as a lock)

–  Guarantees mutually exclusive access to a resource (only one process is in
the critical section at a time).

–  Can vary from 0 to 1
–  It is initialized to free (value = 1)

•  Counting Semaphore:
–  Useful when multiple units of a resource are available
–  The initial count to which the semaphore is initialized is usually the number

of resources.
–  A process can acquire access so long as at least one unit of the resource is

available

Computer Science Lecture 8, page 13 Computer Science CS377: Operating Systems

Semaphores: Key Concepts!
•  Like locks, a semaphore supports two atomic operations, Semaphore.Wait() and

Semaphore.Signal().

 S.Wait() // wait until semaphore S
 // is available
 <critical section>

 S.Signal() // signal to other processes
 // that semaphore S is free
•  Each semaphore supports a queue of processes that are waiting to access the

critical section (e.g., to buy milk).
•  If a process executes S.Wait() and semaphore S is free (non-zero), it continues

executing. If semaphore S is not free, the OS puts the process on the wait queue
for semaphore S.

•  A S.Signal() unblocks one process on semaphore S's wait queue.

Computer Science Lecture 8, page 14 Computer Science CS377: Operating Systems

Binary Semaphores: Example!
•  Too Much Milk using locks:
 Thread A Thread B

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

•  Too Much Milk using semaphores:
 Thread A Thread B

 Semaphore.Wait(); Semaphore.Wait();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Semaphore.Signal(); Semaphore.Signal();

Computer Science Lecture 8, page 15 Computer Science CS377: Operating Systems

Implementing Signal and Wait!

=> Signal and Wait of course must be atomic!

class Semaphore {
 public:
 void Wait(Process P);
 void Signal();
 private:
 int value;
 Queue Q; // queue of processes;
}
Semaphore(int val) {
 value = val;
 Q = empty;
}

Wait(Process P) {
 value = value - 1;
 if (value < 0) {
 add P to Q;
 P->block();
} }
Signal() {
 value = value + 1;
 if (value <= 0){
 remove P from Q;
 wakeup(P);
} }

Computer Science Lecture 8, page 16 Computer Science CS377: Operating Systems

Signal and Wait: Example!
P1: S.Wait();
 S.Wait(); P2: S.Wait();

 S.Signal(); S.Signal();

 S.Signal();

Computer Science Lecture 8, page 17 Computer Science CS377: Operating Systems

Signal and Wait: Example!

Computer Science Lecture 8, page 18 Computer Science CS377: Operating Systems

Using Semaphores!
•  Mutual Exclusion: used to guard critical sections

–  the semaphore has an initial value of 1
–  S->Wait() is called before the critical section, and S->Signal() is called

after the critical section.
•  Scheduling Constraints: used to express general scheduling

constraints where threads must wait for some circumstance.
–  The initial value of the semaphore is usually 0 in this case.
–  Example: You can implement thread join (or the Unix system call waitpid

(PID)) with semaphores:

Semaphore S;

S.value = 0; // semaphore initialization

Thread.Join Thread.Finish
 S.Wait(); S.Signal();

Computer Science Lecture 8, page 19 Computer Science CS377: Operating Systems

Multiple Consumers and Producers!
class BoundedBuffer {!
 public:!
 void Producer(); !
 void Consumer();!
 private:!
 Items buffer;!
 // control access to buffers!
 Semaphore mutex; !
 // count of free slots !
 Semaphore empty; !
 // count of used slots!
 Semaphore full; !
} !
BoundedBuffer::BoundedBuffer
(int N){!
 mutex.value = 1;!
 empty.value = N;!
 full.value = 0;!
 new buffer[N];!
}!

BoundedBuffer::Producer(){!
 <produce item>!
 empty.Wait(); // one fewer slot, or
wait!
 mutex.Wait(); // get access to
buffers!
 <add item to buffer>!
 mutex.Signal(); // release buffers!
 full.Signal(); // one more used slot!
}!
BoundedBuffer::Consumer(){!
 full.Wait(); //wait until there's an
item!
 mutex.Wait(); // get access to
buffers!
 <remove item from buffer>!
 mutex.Signal(); // release buffers!
 empty.Signal(); // one more free
slot!
 <use item> }!

Computer Science Lecture 8, page 20 Computer Science CS377: Operating Systems

Multiple Consumers and Producers
Problem!

Computer Science Lecture 8, page 21 Computer Science CS377: Operating Systems

Summary!
•  Locks can be implemented by disabling interrupts or busy waiting

•  Semaphores are a generalization of locks

•  Semaphores can be used for three purposes:
–  To ensure mutually exclusive execution of a critical section (as locks do).
–  To control access to a shared pool of resources (using a counting

semaphore).
–  To cause one thread to wait for a specific action to be signaled from another

thread.

