
Computer Science Lecture 7, page 1 Computer Science CS377: Operating Systems

Last Class: CPU Scheduling!
•  Scheduling Algorithms:

–  FCFS
–  Round Robin
–  SJF
–  Multilevel Feedback Queues
–  Lottery Scheduling

•  Review questions:
•  How does each work?
•  Advantages? Disadvantages?

Computer Science Lecture 7, page 2 Computer Science CS377: Operating Systems

Adjusting Priorities in MLFQ!
•  Job starts in highest priority queue.

•  If job's time slices expires, drop its priority one level.

•  If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

! CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

Computer Science Lecture 7, page 3 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1!

• 3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length
Completion Time Wait Time

RR MLFQ RR MLFQ
1 30
2 20
3 10

Average
Queue Time

 Slice Job
1 1
2 2
3 4

Computer Science Lecture 7, page 4 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1!

• 5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length
Completion Time Wait Time
RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26 2/3 28 1/3

Queue Time
Slice Job

1 1 111 , 221 , 331

2 2 153 , 273 , 393
3 4 1137 , 2177 , 3217

12511 , 22911 , 33210 ...

Computer Science Lecture 7, page 5 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2!

• 3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 2 sec,
context switch time of 0 sec, 2 queues.

Job Length
Completion Time Wait Time

RR MLFQ RR MLFQ
1 30
2 20
3 10

Average
Queue Time

Slice Job
1 1
2 2

Computer Science Lecture 7, page 6 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2!

• 3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length
Completion

Time Wait Time
RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3

Computer Science Lecture 7, page 7 Computer Science CS377: Operating Systems

Improving Fairness!
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:
•  Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
•  Adjust the priority of jobs as they do not get serviced (Unix

originally did this.) This ad hoc solution avoids starvation but
average waiting time suffers when the system is overloaded
because all the jobs end up with a high priority,.

Computer Science Lecture 7, page 8 Computer Science CS377: Operating Systems

Lottery Scheduling!
•  Give every job some number of lottery tickets.
•  On each time slice, randomly pick a winning ticket.
•  On average, CPU time is proportional to the number of tickets

given to each job.
•  Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

•  Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

Computer Science Lecture 7, page 9 Computer Science CS377: Operating Systems

Lottery Scheduling: Example!
•  Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% 9%
0/2
2/0

10/1
1/10

Computer Science Lecture 7, page 10 Computer Science CS377: Operating Systems

Lottery Scheduling Example!
•  Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)

10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

Computer Science Lecture 7, page 11 Computer Science CS377: Operating Systems

Today: Synchronization!
• What kind of knowledge and mechanisms do we need to get independent processes to
communicate and get a consistent view of the world (computer state)?
• Example: Too Much Milk

Time You Your roommate
3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Arrive at grocery Look in fridge, no milk
3:25 Buy milk Leave for grocery
3:35 Arrive home, put milk in fridge
3:45 Buy milk
3:50 Arrive home, put up mlk
3:50 Oh no!

Computer Science Lecture 7, page 12 Computer Science CS377: Operating Systems

Synchronization Terminology!
•  Synchronization: use of atomic operations to ensure cooperation

between threads
•  Mutual Exclusion: ensure that only one thread does a particular

activity at a time and excludes other threads from doing it at that
time

•  Critical Section: piece of code that only one thread can execute
at a time

•  Lock: mechanism to prevent another process from doing
something
–  Lock before entering a critical section, or before accessing shared data.
–  Unlock when leaving a critical section or when access to shared data is

complete
–  Wait if locked

=> All synchronization involves waiting.

Computer Science Lecture 7, page 13 Computer Science CS377: Operating Systems

Too Much Milk: Solution 1!
•  What are the correctness properties for this problem?

–  Only one person buys milk at a time.
–  Someone buys milk if you need it.

•  Restrict ourselves to atomic loads and stores as building blocks.
–  Leave a note (a version of lock)
–  Remove note (a version of unlock)
–  Do not buy any milk if there is note (wait)

Thread A Thread B

if (noMilk & NoNote) { if (noMilk & NoNote) {
 leave Note; leave Note;
 buy milk; buy milk;
 remove note; remove note;
} }
Does this work?

Computer Science Lecture 7, page 14 Computer Science CS377: Operating Systems

Too Much Milk: Solution 2!
How about using labeled notes so we can leave a note before

checking the the milk?

 Thread A Thread B

 leave note A leave note B
 if (noNote B) { if (noNote A) {
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 } }
 remove note; remove note;

Does this work?

Computer Science Lecture 7, page 15 Computer Science CS377: Operating Systems

Too Much Milk: Solution 3!
 Thread A Thread B

 leave note A leave note B
X: while (Note B) { Y: if (noNote A) {
 do nothing; if (noMilk){
 } buy milk;
 if (noMilk){ }
 buy milk; }
 } remove note B;
 remove note A;

Does this work?

Computer Science Lecture 7, page 16 Computer Science CS377: Operating Systems

Correctness of Solution 3!
•  At point Y, either there is a note A or not.

1.  If there is no note A, it is safe for thread B to check and buy milk, if needed.
(Thread A has not started yet).

2.  If there is a note A, then thread A is checking and buying milk as needed or is
waiting for B to quit, so B quits by removing note B.

•  At point X, either there is a note B or not.
1.  If there is not a note B, it is safe for A to buy since B has either not started or quit.
2.  If there is a note B, A waits until there is no longer a note B, and either finds milk

that B bought or buys it if needed.

•  Thus, thread B buys milk (which thread A finds) or not, but either way it
removes note B. Since thread A loops, it waits for B to buy milk or not, and
then if B did not buy, it buys the milk.

Computer Science Lecture 7, page 17 Computer Science CS377: Operating Systems

Is Solution 3 a good solution?!
•  It is too complicated - it was hard to convince ourselves this

solution works.

•  It is asymmetrical - thread A and B are different. Thus, adding
more threads would require different code for each new thread and
modifications to existing threads.

•  A is busy waiting - A is consuming CPU resources despite the fact
that it is not doing any useful work.

=> This solution relies on loads and stores being atomic.

Computer Science Lecture 7, page 18 Computer Science CS377: Operating Systems

Language Support for Synchronization!

Have your programming language provide atomic routines for
synchronization.

•  Locks: one process holds a lock at a time, does its critical section
releases lock.

•  Semaphores: more general version of locks.

•  Monitors: connects shared data to synchronization primitives.

=> All of these require some hardware support, and waiting.

Computer Science Lecture 7, page 19 Computer Science CS377: Operating Systems

Locks!
•  Locks: provide mutual exclusion to shared data with two

“atomic” routines:
–  Lock.Acquire - wait until lock is free, then grab it.
–  Lock.Release - unlock, and wake up any thread waiting in Acquire.

Rules for using a lock:

•  Always acquire the lock before accessing shared data.
•  Always release the lock after finishing with shared data.
•  Lock is initially free.

Computer Science Lecture 7, page 20 Computer Science CS377: Operating Systems

Implementing Too Much Milk with
Locks!

Too Much Milk

 Thread A Thread B

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

•  This solution is clean and symmetric.
•  How do we make Lock.Acquire and Lock.Release atomic?

Computer Science Lecture 7, page 21 Computer Science CS377: Operating Systems

Hardware Support for Synchronization!

• Implementing high level primitives requires low-level hardware support
• What we have and what we want

Concurrent programs

Low-level atomic
operations (hardware)

load/store interrupt disable test&set

High-level atomic
operations (software)

lock semaphore
monitors send & receive

Computer Science Lecture 7, page 22 Computer Science CS377: Operating Systems

Implementing Locks By Disabling
Interrupts!

•  There are two ways the CPU scheduler gets control:
–  Internal Events: the thread does something to relinquish control (e.g., I/O).
–  External Events: interrupts (e.g., time slice) cause the scheduler to take

control away from the running thread.
•  On uniprocessors, we can prevent the scheduler from getting

control as follows:
–  Internal Events: prevent these by not requesting any I/O operations during

a critical section.
–  External Events: prevent these by disabling interrupts (i.e., tell the

hardware to delay handling any external events until after the thread is
finished with the critical section)

•  Why not have the OS support Lock::Acquire() and Lock::Release
as system calls?

Computer Science Lecture 7, page 23 Computer Science CS377: Operating Systems

Implementing Locks by Disabling
Interrupts!

•  For uniprocessors, we can disable interrupts for high-level primitives like locks,
whose implementations are private to the kernel.

•  The kernel ensures that interrupts are not disabled forever, just like it already
does during interrupt handling.

class Lock {
 public:
 void Acquire();
 void Release();
 private:
 int value;
 Queue Q;
}
Lock::Lock {
 // lock is free
 value = 0;
 // queue is empty
 Q = 0;
}

Lock::Acquire(T:Thread){
 disable interrupts;
 if (value == BUSY) {
 add T to Q
 T->Sleep();
 } else {
 value = BUSY;
 }
 enable interrupts; }

Lock::Release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q
 put T on ready queue
 } else {
 value = FREE
 }
 enable interrupts; }

Computer Science Lecture 7, page 24 Computer Science CS377: Operating Systems

Wait Queues!
When should Acquire re-enable interrupts when going to sleep?

•  Before putting the thread on the wait queue?
–  No, Release could check the queue, and not wake up the thread.

•  After putting the thread on the wait queue, but before going to
sleep?
–  No, Release could put the thread on the ready queue, but it could already be

on the ready queue. When the thread wakes up, it will go to sleep, missing
the wakeup from Release.

=>We still have a problem with multiprocessors.

Computer Science Lecture 7, page 25 Computer Science CS377: Operating Systems

Example!
•  When the sleeping thread wakes up, it returns from Sleep back to

Acquire.
•  Interrupts are still disabled, so its ok to check the lock value, and

if it is free, grab the lock and turn on interrupts.

Computer Science Lecture 7, page 26 Computer Science CS377: Operating Systems

Summary!
•  Communication among threads is typically done through shared

variables.

•  Critical sections identify pieces of code that cannot be executed in
parallel by multiple threads, typically code that accesses and/or
modifies the values of shared variables.

•  Synchronization primitives are required to ensure that only one
thread executes in a critical section at a time.
–  Achieving synchronization directly with loads and stores is tricky and error-

prone
–  Solution: use high-level primitives such as locks, semaphores, monitors

