
1

An Optimal Algorithm for Mutual
Exclusion on Computer Networks

Ricart and Agrawala, 1981

Overview

• An algorithm for ensuring mutual
exclusion over a network whose nodes
communicate through message passing.

• Uses only 2(N-1) messages per “lock”,
where N is the number of nodes.

How it works

• A node attempting the lock sends out a
REQUEST message to all nodes.

• Upon receipt of the REQUEST, each node
either sends a REPLY message
immediately if the requesting node has
priority, otherwise it defers the REPLY
until later.

• When requesting node receives a REPLY
from all nodes, it enters its critical section.

• A sequence number is sent with each
REQUEST. The number is always higher
than the highest number received at that
time.

• Priority is determined by a sequence
number. If seq. numbers are the same,
node number is used as a tie-breaker.

Variations

• Broadcast messages – if broadcasting is
supported in the network, message traffic
an be reduced to N messages, 1 broadcast
REQUEST and (N-1) REPLIES.

• Implicit reply – send DEFERRED message
and no REPLY message. If a certain
amount of time passes on the requesting
node without receiving a DEFERRED
msg, a reply is assumed. Using this
scheme, message traffic can vary between
1(N-1) and 3(N-1). With little contention,
it’s close to 1(N-1).

• If the above methods are combined,
message count can be as low as 1.

2

More Variations

• Readers and Writers – Can be easily
modified to solve readers and writers
problem. Readers just REPLY
immediately for all requests from other
readers. Writers behave as usual.

• Establishing priority – Nodes can have
different priorities. Low priority nodes use
large sequence number increments, high
priority nodes use small increments.

Insertion and removal of nodes

• Insertion of nodes
- get unique id
- get node list from other nodes
- be placed on all other nodes’ lists
- get highest_sequence_number

• Removal of nodes
- notify all other nodes of intention to
leave.
- can not request M.E.
- immediately REPLY to all REQUESTs
until ACK is received from all other nodes

Handling partial failure

• Node failures
- if REPLY is not received before a
timeout expires, an ARE_YOU_THERE
messge is sent to each suspect node.
- when ARE_YOU_THERE is received,
we look at whether we have deferred a
response to that node. If not, REPLY
immediately. If so, return
YES_I_AM_HERE
- if timeout expires after an
ARE_YOU_THERE message is sent, we
notify all other nodes of the failure. Nodes
waiting on a REPLY from the failed node
will pretend it was received.

