
5/13/08

1

Computer Science Lecture 27, page 1 CS677: Distributed OS

Final Thoughts

Computer Science Lecture 27, page 2 CS677: Distributed OS

Topics in Distributed Systems

•  Communication in distributed systems
– RPCs, message versus stream-oriented communication

•  Processes and scheduling
– Code and process migration, load balancing, scheduling
–  Key idea: move code or processes for performance

•  Naming
– DNS, recursive v/s iterative name resolution
– Key idea: use hierarchies to handle large distributed systems

5/13/08

2

Computer Science Lecture 27, page 3 CS677: Distributed OS

Topics in Distributed Systems

•  Canonical problems

–  Clock synchronization, logical clocks, leader election, mutual
exclusion,...

•  Consistency and replication
– Consistency semantics, web caching
– Key idea: replicate and locate data close to where it is accessed

•  Fault Tolerance
– Key idea: use redundancy to increase availability

Computer Science Lecture 27, page 4 CS677: Distributed OS

Topics in Distributed Systems

•  Security
–  Encryption, authentication,..
– Security is hard and shouldn't be an after-throught

•  Distributed File Systems
– NFS, Coda, xFS
– Key idea: Make remote data access possible and efficient

•  Distributed Middleware: CORBA, DCOM, Jini
•  Other topics: Video-on-demand, Multimedia OS

5/13/08

3

Computer Science Lecture 27, page 5 CS677: Distributed OS

Follow-on Courses

•  CMPSCI 653: Computer Networks

•  CMPSCI 754/654: Multimedia Systems

•  CMPSCI 515: Computer and Network Security
•  Advanced OS
•  Sensor Networks
•  Linux kernel programming
•  Seminars

Computer Science Lecture 27, page 6 CS677: Distributed OS

Five Sermons in Computer Science

•  Courtesy: Tom Anderson, Univ. of Washington

•  Sermon 1: Simplicity
•  Sermon 2: Performance Tuning
•  Sermon 3: Programming Craft
•  Sermon 4: Information is Property
•  Sermon 5: Stay Broad

5/13/08

4

Computer Science Lecture 27, page 7 CS677: Distributed OS

Sermon 1: Simplicity

•  Keep things simple, stupid (KISS principle)
•  Simplicity is absolute good, not a tradeoff

– Forces against simplicity: marketing, ...
•  Reasons:

– Easier to build and maintain, faster, cheaper,..

•  Ways to make things simple:
–  Design, then code
–  Think first, act later

Computer Science Lecture 27, page 8 CS677: Distributed OS

Sermon 2: Building High-Performance
Systems

•  Options:
–  Make every line of code very fast
–  Tune selectively (better)

•  Observations
–  90-10 rule: 90% of time spent in 10% of code
–  Difficult to predict performance problems in advance

•  Solutions
–  Measure existing systems (profiling)
–  Modeling
–  Simulate algorithms ahead of time
–  Tuning: build, get it to run, measure, tune bottlenecks
–  Go top-down

5/13/08

5

Computer Science Lecture 27, page 9 CS677: Distributed OS

Sermon 3: Programming Style

•  Question: how to build large software systems in a reasonable amount of time

and make them reliable?
•  Programming is a craft (art?)

–  Need lot of discipline and structure to make large systems work (well)
•  Rule 0: KISS
•  Rule 1: Don't over-generalize
•  Rule 2: If it is complex, throw it away and start over
•  Rule 3: Modularity (and module testing)
•  Rule 4: Adopt consistent style

–  Naming convention, file organization, procedure structuring,...
•  Rule 5: Don't go for quick, dirty fixes (do it right the first time)
•  Rule 6: Document carefully and well

–  Describe high-level idea and then the code
•  Rule 7: Quality not quantity is important for documentation
•  Summary: Discipline, craft. Take time upfront to save up time later.

Computer Science Lecture 27, page 10 CS677: Distributed OS

Sermon 4: Information is Property

•  Intellectual property (IP) issues are important
– Who own what? What rights do you have?

•  Stealing information is still stealing!

5/13/08

6

Computer Science Lecture 27, page 11 CS677: Distributed OS

Sermon 5: Stay Broad

•  Fast moving field.
•  New developments all the time

–  XML, Java did not exist 5 years ago

•  Solutions
–  Continuing education
–  Education is a life-long process
–  Explore new areas both inside and outside CS

•  Knowledge is power

