Wireless Sensor Networks

CMPSCI 677 Lecture 26

Wireless Sensor Networks

- What are building blocks of a WSN?
- What is a WSN used for?

Structure:

- Hardware platforms ("motes")
- · Sensing applications
- Canonical problems
- Examples
- Operating systems

WSN Platforms

What are the differences between WSN platforms and typical computers?

- · Battery power
 - Goal: maximum system lifetime with no recharge/replacement
- Low-power radios for communication
 - 10-200kbit/sec
- Small CPUs
 - E.g. 8bit, 4k RAM.
- Flash storage
- Sensors

Low Power Radios

- ISM band 430, 900, or 2400 MHz
- Varying modulation and protocol:
 - Custom (FSK?) Mica2, 20 kbit/s
 - Bluetooth
 - Zigbee (802.15.4) ~200kbit/sec
- Short range
 - Typically <100 meters
- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive
- · Listening can take more energy than transmitting

Time Synchronization

- Applications:
- Event detection by arrival time – E.g. gunshot triangulation
- Duty cycling synchronization
- External reference
 - GPS, WWV
- Autonomous synchronization
 - Receiver-receiver
 - Sender-receiver
 - Drift estimation

Examples - TinyDB

TinySQL:

SELECT <aggregates>, <attributes> [FROM {sensors | <buffer>}] [WHERE <predicates>] [GROUP BY <exprs>] [SAMPLE PERIOD <const> | ONCE] [INTO <buffer>] [TRIGGER ACTION <command>]

Acquisitional Query Processing

- What's really new & different about databases on (mote-based) sensor networks?
- This paper's answer:
 - Long running queries on physically embedded devices that control when and where and with what frequency data is collected
 - Versus traditional DBMS where data is provided a priori
- For a distributed, embedded sensing environment, ACQP provides a framework for addressing issues of
 - · When, where, and how often data is sensed/sampled
 - Which data is delivered

Operating Systems

What features does an operating system need?

	Unix	TinyOS	SOS
Hardware drivers, system init	Yes	Yes	Yes
Loadable programs	Yes	No	Yes
File system	Yes	No	No
Resource allocation (e.g. memory)	Yes	No	Yes
Processes / threads	Yes	No	Sort of
Networking support	Yes	Yes	Yes
IPC	Yes	Yes	Yes
Event scheduling / timers	Yes	Yes	Yes

Threading implemented as macros

