
5/8/08

1

Wireless Sensor Networks

CMPSCI 677
Lecture 26

Wireless Sensor Networks
•  What are building blocks of a WSN?
•  What is a WSN used for?

Structure:
•  Hardware platforms (“motes”)
•  Sensing applications
•  Canonical problems
•  Examples
•  Operating systems

5/8/08

2

WSN Platforms
 What are the differences between WSN platforms and

typical computers?

•  Battery power
–  Goal: maximum system lifetime with no recharge/replacement

•  Low-power radios for communication
–  10-200kbit/sec

•  Small CPUs
–  E.g. 8bit, 4k RAM.

•  Flash storage
•  Sensors

Battery Power

Example: Mica2 “mote”
•  Total battery capacity: 2500mAH (2 AA cells)
•  System consumption: 25 mA (CPU and radio on)
•  Lifetime: 100 hours (4 days)

Alternatives:
•  Bigger batteries
•  Solar/wind/… (“energy harvesting”)
•  Duty cycling

5/8/08

3

Low Power Radios
•  ISM band – 430, 900, or 2400 MHz
•  Varying modulation and protocol:

–  Custom (FSK?) – Mica2, 20 kbit/s
–  Bluetooth
–  Zigbee (802.15.4) - ~200kbit/sec

•  Short range
–  Typically <100 meters

•  Low power. E.g. Chipcon CC2420:
–  9-17 mA transmit (depending on output level)
–  19 mA receive

•  Listening can take more energy than transmitting

Small CPUs
•  Example: Atmel AVR

–  8 bit
–  4 KB RAM
–  128 KB code flash
–  ~2 MIPS @ 8MHz
–  ~8 mA

•  Example: TI MSP430
–  16 bit (sort of)
–  10 KB RAM
–  48 KB code flash
–  2 mA

Higher-powered processors:

ARM7 (Yale XYZ platform)
 32 bit, 50 MHz, >>1MB RAM

ARM9 (StarGate, others)
 32 bit, 400 MHz, >>16MB RAM

5/8/08

4

Flash Storage

Raw flash
•  Small (serial NOR), very low power

(NAND)
•  Page-at-a-time write
•  No overwrite without erasing
•  Divided into pages and erase blocks
•  Typical values: 512B pages,

32 pages in erase block
•  Garbage collection needed to gather

free pages for erasing

“Cooked” flash

•  Disk-like interface
•  512B re-writable blocks
•  Very convenient
•  Higher power consumption

Serial NOR
flash

Removable
flash media

Sensors
•  Temperature
•  Humidity
•  Magnetometer
•  Vibration
•  Acoustic
•  Light
•  Motion (e.g. passive IR)
•  Imaging (cameras)
•  Ultrasonic ranging
•  GPS
•  Lots of others…

5/8/08

5

Sensor Applications

Base-Remote Link

Data Service

Internet

Client Data Browsing
and Processing

Basestation

Gateway

Sensor Patch

Patch
Network

Sensor Node

Transit Network

•  Data driven
–  Distributed computation, not

communication network
•  Homogeneous

–  All sensors typically participate in
the same application(s)

•  Typical architecture: data
collection, fusion, and
transport

Canonical WSN Problems

•  Localization
•  Time Synchronization
•  Routing
•  Duty cycled networking
•  Data aggregation

5/8/08

6

Localization
Determining relative or absolute

location of a sensor
Solutions:
•  GPS
•  Ranging and triangulation

–  Radio strength (RSSI)
–  RF time-of-flight

(interferometry)
–  Acoustic time-of-flight

•  Directional triangulation
–  Acoustic – phase

measurement

Problems in Localization
•  GPS is expensive, sometimes

difficult to use, and power-
hungry
–  Requires line-of-sight to 3 or 4

satellites overhead
–  80mA for 1-5 minutes to

acquire fix
•  Radio ranging is not accurate
•  Acoustic ranging is limited

–  Range
–  Applications

•  Sensitivity to errors
–  Robust triangulation is hard

Distance

R
S

S
I

Path loss
Shadowing
Fading

5/8/08

7

Time Synchronization
•  Applications:
•  Event detection by arrival time

–  E.g. gunshot triangulation
•  Duty cycling synchronization

•  External reference
–  GPS, WWV

•  Autonomous synchronization
–  Receiver-receiver
–  Sender-receiver
–  Drift estimation

Autonomous Synchronization

Idea:
–  Sample time at A
–  Transmit to B

Issues:
–  B receives T_A at T_A+Δ
–  Software delays (T_tx, T_rx)
–  Channel acquisition (T_mac)
–  Propagation delay (T_prop)

Clock drift
–  Quartz crystal:

50 ppm = 50µS/s = 180ms/hr
–  Varies with e.g. temperature

T_A

T_tx

T_mac

T_prop

T_rx

T_A+T_os+T_mac
+T_prop+T_rx A B

5/8/08

8

Synchronization methods
•  Receiver-receiver

–  Eliminate transmit uncertainty

•  Sender-receiver
–  Reduce transmit uncertainty

•  Drift estimation
–  Estimate and correct

X
A

B
T_A = T_B ± T_rx

Time
stamp

Network
stack

App

Time
stamp

Network
stack

App

T_A

T_A,
T_B

T_B = T_A+T_prop

Routing
•  What addresses make sense in a sensor network?

–  Location
–  Data

•  Geographic routing
–  GPSR
–  Beacon routing

•  Flooding, tree construction
–  Data collection architectures

GPSR – forward to node
physically closest to

destination

5/8/08

9

More Routing
•  How to handle duty

cycling?
–  Sleep or go around?

•  Wireless vs. wired

Sleeping

C = 1

C = ½

More Routing
•  Network lifetime

–  More packets = more
battery drain

1 packet/s

4 packet/s

Data
sink

5/8/08

10

Duty Cycled Networking
Problem: continuous listening is too expensive
Solution: listen periodically

listen

Rx

Tx
preamble data

Low-power
listening

Rx

Tx
preamble data

Synchronized
low-power
listening

Example - Directed Diffusion
•  Name data (not nodes), use

physicality
•  Sensors publish event notifications

and users subscribe to specific
types.

•  optimize path with gradient-based
feedback

•  Opportunistic in-network
aggregation and nested queries.

Event

Source 1

Sensor sink

Directed
Diffusion

A sensor field

Source 2

5/8/08

11

Directed Diffusion
•  Expressing an Interest

–  Using attribute-value pairs
–  E.g.,

•  Uses publish/subscribe
–  Inquirer expresses an interest, I, using attribute values
–  Sensor sources that can service I, reply with data

Type = Wheeled vehicle // detect vehicle location
Interval = 20 ms // send events every 20ms
Duration = 10 s // Send for next 10 s
Field = [x1, y1, x2, y2] // from sensors in this area

Gradient-based Routing
•  Inquirer (sink) broadcasts exploratory

interest, i1
–  Intended to discover routes between source

and sink

•  Neighbors update interest-cache and
forwards i1

•  Gradient for i1 set up to upstream neighbor
–  No source routes
–  Gradient – a weighted reverse link
–  Low gradient Few packets per unit time

needed
Low

Event

Low
Low

Exploratory Request
Gradient

Bidirectional gradients established
 on all links through flooding

5/8/08

12

Examples - TinyDB
TinySQL:

SELECT <aggregates>, <attributes>
[FROM {sensors | <buffer>}]
[WHERE <predicates>]
[GROUP BY <exprs>]
[SAMPLE PERIOD <const> | ONCE]
[INTO <buffer>]
[TRIGGER ACTION <command>]

Data Model
•  Entire sensor network as one single, infinitely-long

logical table: sensors
•  Columns consist of all the attributes defined in the

network
•  Typical attributes:

–  Sensor readings
–  Meta-data: node id, location, etc.
–  Internal states: routing tree parent, timestamp, queue length, etc.

•  Nodes return NULL for unknown attributes
•  On server, all attributes are defined in catalog.xml

5/8/08

13

Acquisitional Query Processing
•  What’s really new & different about databases on (mote-based)

sensor networks?
•  This paper’s answer:

–  Long running queries on physically embedded devices that control
when and where and with what frequency data is collected

–  Versus traditional DBMS where data is provided a priori

•  For a distributed, embedded sensing environment, ACQP provides a
framework for addressing issues of

•  When, where, and how often data is sensed/sampled
•  Which data is delivered

PRESTO: Model-driven Push
Insight:
•  Models are expensive to

create, but simple to check
•  Data which can be predicted

does not need to be reported.

Push if sensor
value exceeds or is
less than predicted
value by δ

PRESTO Proxy

Data
Cache

Modeling &
Prediction

Model Check

PRESTO Sensor

Data Archive Sensor Data

5/8/08

14

Operating Systems
What features does an operating system need?

Unix TinyOS SOS
Hardware drivers, system init Yes Yes Yes
Loadable programs Yes No Yes
File system Yes No No
Resource allocation (e.g. memory) Yes No Yes
Processes / threads Yes No Sort of
Networking support Yes Yes Yes
IPC Yes Yes Yes
Event scheduling / timers Yes Yes Yes

TinyOS & nesC Concepts
•  New Language: nesC. Basic unit of code = Component

•  Component
– Process Commands
– Throws Events
– Has a Frame for storing local state
– Uses Tasks for concurrency

•  Components provide interfaces
– Used by other components to communicate with this component

•  Components are wired to each other in a configuration to
connect them

(used for
split-phase)

5/8/08

15

Application = Graph of Components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocks

Route map router sensor appln

A
pp

lic
at

io
n

HW

SW

Th
e

O
S

TinyOS Code Structure

post A()

Y.multiRead()

(A runs sometime)

Return OK

Flash. read()

Flash. readDone()
If (bytes remain)

post A()
Else

signal Y.multiReadDone()

Y.multiReadDone()

5/8/08

16

SOS
•  Micro-kernel architecture

–  User-space, kernel-space separation
–  Supports dynamic, run-time addition of modules
–  Memory protection possible between module & kernel space

•  Each application has one or more modules
–  Within a module, interaction uses regular function calls
–  Modules interact by passing messages
–  Modules can retain state, allocate / deallocate memory

Module 1 Module 2

Micro-kernel

Module-space

Kernel-space

Modules: SOS vs TinyOS

static mod_header_t mod_header
 SOS_MODULE_HEADER =
{
 .mod_id = DFLT_APP_ID0,
 .state_size = sizeof(app_state_t),
 .num_timers = 0,
 .num_sub_func = 0,
 .num_prov_func = 0,
 .platform_type = HW_TYPE ,
 .processor_type = MCU_TYPE,
 .code_id = ehtons(DFLT_APP_ID0),
 .module_handler = test_msg_handler,
};

module Provider
{
 provides interface StdControl;
 provides interface X;
 uses interface Z;
}
implementation
{
 // C code
 ….
}

TinyOS – compile-time SOS – run-time

5/8/08

17

SOS - Proto-threads
•  Threading implemented as macros

#include "pt.h"
struct pt pt;

PT_THREAD(example(struct pt *pt))
{
 PT_BEGIN(pt);
 while(1)
 {
 if(initiate_io())
 {
 timer_start(&timer);
 PT_WAIT_UNTIL(pt, io_completed() || timer_expired(&timer));
 read_data();
 }
 }
 PT_END(pt);
}

Wrap-up
•  What did we talk about?

•  Energy management
–  Esp. duty-cycled radios

•  Routing
–  By naming and finding information or locations

•  In-network processing
–  Aggregation (tinyDB)
–  Model checking (PRESTO)

•  Light weight operating systems

