
4/22/08

1

Computer Science Lecture 21, page 1

Today: Coda, xFS

•  Case study: NFS (continued)

•  Case Study: Coda File System

•  Brief overview of other recent file systems
–  xFS
– Log structured file systems

CS677: Distributed OS

Computer Science Lecture 21, page 2 CS677: Distributed OS

File Attributes (1)

•  Some general mandatory file attributes in NFS.
–  NFS modeled based on Unix-like file systems

•  Implementing NFS on other file systems (Windows) difficult
–  NFS v4 enhances compatibility by using mandatory and recommended attributes

Attribute Description

TYPE The type of the file (regular, directory, symbolic link)

SIZE The length of the file in bytes

CHANGE Indicator for a client to see if and/or when the file has changed

FSID Server-unique identifier of the file's file system

4/22/08

2

Computer Science Lecture 21, page 3 CS677: Distributed OS

File Attributes (2)

•  Some general recommended file attributes.

Attribute Description
ACL an access control list associated with the file

FILEHANDLE The server-provided file handle of this file

FILEID A file-system unique identifier for this file

FS_LOCATIONS Locations in the network where this file system may be found

OWNER The character-string name of the file's owner

TIME_ACCESS Time when the file data were last accessed

TIME_MODIFY Time when the file data were last modified

TIME_CREATE Time when the file was created

Computer Science Lecture 21, page 4 CS677: Distributed OS

Semantics of File Sharing
a)  On a single processor, when a read

follows a write, the value returned by the
read is the value just written.

b)  In a distributed system with caching,
obsolete values may be returned.

4/22/08

3

Computer Science Lecture 21, page 5 CS677: Distributed OS

Semantics of File Sharing

•  Four ways of dealing with the shared files in a distributed system.
–  NFS implements session semantics

•  Can use remote/access model for providing UNIX semantics (expensive)
•  Most implementations use local caches for performance and provide session semantics

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

Computer Science Lecture 21, page 6 CS677: Distributed OS

File Locking in NFS

•  NFS supports file locking
•  Applications can use locks to ensure consistency
•  Locking was not part of NFS until version 3
•  NFS v4 supports locking as part of the protocol (see above table)

Operation Description

Lock Creates a lock for a range of bytes (non-blocking_

Lockt Test whether a conflicting lock has been granted

Locku Remove a lock from a range of bytes

Renew Renew the lease on a specified lock

4/22/08

4

Computer Science Lecture 21, page 7 CS677: Distributed OS

File Locking: Share Reservations

•  The result of an open operation with share reservations in NFS.
a)  When the client requests shared access given the current denial state.
b)  When the client requests a denial state given the current file access state.

 Current file denial state

NONE READ WRITE BOTH

READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

(a)

 Requested file denial state

NONE READ WRITE BOTH

READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

(b)

Request
access

Current
access
state

Computer Science Lecture 21, page 8 CS677: Distributed OS

Client Caching

•  Client-side caching is left to the implementation (NFS does not prohibit it)
–  Different implementation use different caching policies

•  Sun: allow cache data to be stale for up to 30 seconds

4/22/08

5

Computer Science Lecture 21, page 9

Client Caching: Delegation

•  NFS V4 supports open delegation
– Server delegates local open and close requests to the NFS

client
– Uses a callback mechanism to recall file delegation.

CS677: Distributed OS

Computer Science Lecture 21, page 10

RPC Failures

•  Three situations for handling retransmissions: use a duplicate
request cache

•  The request is still in progress
•  The reply has just been returned
•  The reply has been some time ago, but was lost.
•  Use a duplicate-request cache: transaction Ids on RPCs,

results cached

CS677: Distributed OS

4/22/08

6

Computer Science Lecture 21, page 11

Security

•  The NFS security architecture.
– Simplest case: user ID, group ID authentication only

CS677: Distributed OS

Computer Science Lecture 21, page 12

Secure RPCs

•  Secure RPC in NFS version 4.

CS677: Distributed OS

4/22/08

7

Computer Science Lecture 21, page 13

Replica Servers

•  NFS ver 4 supports replications

•  Entire file systems must be replicated

•  FS_LOCATION attribute for each file

•  Replicated servers: implementation specific

CS677: Distributed OS

Computer Science Lecture 21, page 14

File Identifiers

•  Each file in Coda belongs to exactly one volume
– Volume may be replicated across several servers
– Multiple logical (replicated) volumes map to the same

physical volume
–  96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OS

4/22/08

8

Computer Science Lecture 21, page 15

Sharing Files in Coda

•  Transactional behavior for sharing files: similar to
share reservations in NFS
– File open: transfer entire file to client machine [similar to

delegation]
– Uses session semantics: each session is like a transaction

• Updates are sent back to the server only when the file is
closed

CS677: Distributed OS

Computer Science Lecture 21, page 16

Transactional Semantics

•  Network partition: part of network isolated from rest
– Allow conflicting operations on replicas across file

partitions
– Reconcile upon reconnection
– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have
executed

– Conflict => force manual reconciliation
CS677: Distributed OS

File-associated data Read? Modified?
File identifier Yes No

Access rights Yes No

Last modification time Yes Yes

File length Yes Yes

File contents Yes Yes

4/22/08

9

Computer Science Lecture 21, page 17

Client Caching

•  Cache consistency maintained using callbacks
– Server tracks all clients that have a copy of the file [provide

callback promise]
– Upon modification: send invalidate to clients

CS677: Distributed OS

Computer Science Lecture 21, page 18

Server Replication

•  Use replicated writes: read-once write-all
– Writes are sent to all AVSG (all accessible replicas)

•  How to handle network partitions?
– Use optimistic strategy for replication
– Detect conflicts using a Coda version vector
– Example: [2,2,1] and [1,1,2] is a conflict => manual

reconciliation
CS677: Distributed OS

4/22/08

10

Computer Science Lecture 21, page 19

Disconnected Operation

•  The state-transition diagram of a Coda client with respect to a
volume.

•  Use hoarding to provide file access during disconnection
–  Prefetch all files that may be accessed and cache (hoard) locally
–  If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OS

Computer Science Lecture 21, page 20

Overview of xFS.

•  Key Idea: fully distributed file system [serverless
file system]

•  xFS: x in “xFS” => no server
•  Designed for high-speed LAN environments

CS677: Distributed OS

4/22/08

11

Computer Science Lecture 21, page 21

Processes in xFS

•  The principle of log-based striping in xFS
– Combines striping and logging

CS677: Distributed OS

Computer Science Lecture 21, page 22

Reading a File Block

•  Reading a block of data in xFS.

CS677: Distributed OS

4/22/08

12

Computer Science Lecture 21, page 23

xFS Naming

•  Main data structures used in xFS.

CS677: Distributed OS

Data structure Description

Manager map Maps file ID to manager

Imap Maps file ID to log address of file's inode

Inode Maps block number (i.e., offset) to log address of block

File identifier Reference used to index into manager map

File directory Maps a file name to a file identifier

Log addresses Triplet of stripe group, ID, segment ID, and segment offset

Stripe group map Maps stripe group ID to list of storage servers

