Security: Focus of Control

• Three approaches for protection against security threats
 a) Protection against invalid operations
 b) Protection against unauthorized invocations
 c) Protection against unauthorized users

Authentication

• Question: how does a receiver know that remote communicating entity is who it is claimed to be?
Authentication Protocol (ap)

- **Ap 1.0**
 - Alice to Bob: “I am Alice”
 - Problem: intruder “Trudy” can also send such a message

- **Ap 2.0**
 - Authenticate source IP address is from Alice’s machine
 - Problem: IP Spoofing (send IP packets with a false address)

- **Ap 3.0: use a secret password**
 - Alice to Bob: “I am Alice, here is my password” (e.g., telnet)
 - Problem: Trudy can intercept Alice’s password by sniffing packets

Authentication Protocol

Ap 3.1: use encryption

- use a symmetric key known to Alice and Bob

 - Alice & Bob (only) know secure key for encryption/decryption

 A to B: msg = encrypt("I am A")
 B computes: if decrypt(msg)="I am A"
 then A is verified
 else A is fraudulent

- failure scenarios: playback attack
 - Trudy can intercept Alice’s message and masquerade as Alice at a later time
Authentication Using Nonces

Problem with ap 3.1: same password is used for all sessions

Solution: use a sequence of passwords
 pick a "once-in-a-lifetime-only" number (nonce) for each session

Ap 4.0
 A to B: msg = "I am A" /* note: unencrypted message */
 B to A: once-in-a-lifetime value, n
 A to B: msg2 = encrypt(n) /* use symmetric keys */
 B computes: if decrypt(msg2)==n
 then A is verified
 else A is fraudulent

 • note similarities to three way handshake and initial sequence number
 choice
 • problems with nonces?

Authentication Using Public Keys

Ap 4.0 uses symmetric keys for authentication
Question: can we use public keys?

symmetry: DA(EA(n)) = EA (DA(n))

AP 5.0
 A to B: msg = "I am A"
 B to A: once-in-a-lifetime value, n
 A to B: msg2 = DA(n)
 B computes: if EA (DA(n))== n
 then A is verified
 else A is fraudulent
Problems with Ap 5.0

- Bob needs Alice’s public key for authentication
 - Trudy can impersonate as Alice to Bob
 - Trudy to Bob: msg = “I am Alice”
 - Bob to Alice: nonce n (Trudy intercepts this message)
 - Trudy to Bob: msg2 = DT(n)
 - Bob to Alice: send me your public key (Trudy intercepts)
 - Trudy to Bob: send ET (claiming it is EA)
 - Bob: verify ET(DT(n)) == n and authenticates Trudy as Alice!!
- Moral: Ap 5.0 is only as “secure” as public key distribution

Man-in-the-middle Attack

- Trudy impersonates as Alice to Bob and as Bob to Alice
 - Alice Trudy Bob
 - “I am A” “I am A”
 - nonce n nonce n
 - DT(n) DT(n)
 - send me ET send me ET
 - ET ET
 - nonce n nonce n
 - DA(n) DA(n)
 - send me EA send me EA
 - EA EA
 - Bob sends data using ET, Trudy decrypts and forwards it using EA!! (Trudy *transparently* intercepts every message)
Digital Signatures Using Public Keys

Goals of digital signatures:
- sender cannot repudiate message never sent ("I never sent that")
- receiver cannot fake a received message

Suppose A wants B to "sign" a message M

B sends DB(M) to A
A computes if EB (DB(M)) == M
then B has signed M

Question: can B plausibly deny having sent M?

Message Digests

- Encrypting and decrypting entire messages using digital signatures is computationally expensive
 - Routers routinely exchange data
 - Does not need encryption
 - Needs authentication and verify that data hasn’t changed
- Message digests: like a checksum
 - Hash function H: converts variable length string to fixed length hash
 - Digitally sign H(M)
 - Send M, DA(H(m))
 - Can verify who sent the message and that it has been changed!
- Property of H
 - Given a digest x, it is infeasible to find a message y such that H(y) = x
 - It is infeasible to find any two messages x and y such that H(x) = H(y)
Hash Functions : MD5

- The structure of MD5

```
128-bit constant

Digest

512 bits

Digest

Message digest
```

Symmetric key exchange: trusted server

Problem: how do distributed entities agree on a key?

Assume: each entity has its own single key, which only it and trusted server know

Server:
- will generate a one-time session key that A and B use to encrypt communication
- will use A and B's single keys to communicate session key to A, B
Key Exchange: Key Distribution Center (1)

- The principle of using a KDC.

Authentication Using a Key Distribution Center (2)

- Using a ticket and letting Alice set up a connection to Bob.
Authentication Using a Key Distribution Center (3)

1. R_{A_1}, A, B
2. $K_{A,KDC}(R_{A_1}, B, K_{A,B}, K_{B,KDC}(A, K_{A,B}))$
3. $K_{A,B}(R_{A_2}), K_{B,KDC}(A, K_{A,B})$
4. $K_{A,B}(R_{A_2}^{-1}, R_B)$
5. $K_{A,B}(R_B^{-1})$

Public Key Exchange

- Mutual authentication in a public-key cryptosystem.

1. $K_B^+(A, R_A)$
2. $K_A^+(R_A, R_B, K_{A,B})$
3. $K_{A,B}(R_B)$
Public key exchange: trusted server

- public key retrieval subject to man-in-middle attack
- locate all public keys in trusted server
- everyone has server's encryption key (ES public)
- suppose A wants to send to B using B's "public" key

Diffie-Hellman Key Exchange

- How to choose a key without encryption
- Agree on n,g – large integers
- Alice choose secret x, Bob chooses secret y
Access Control

- Access control lists
- Capabilities
- Protection domains

Protection Against Intruders: Firewalls

- A common implementation of a firewall.
Firewalls

Firewall: network components (host/router+software) sitting between inside ("us") and outside ("them)

Packet filtering firewalls: drop packets on basis of source or destination address (i.e., IP address, port)

Application gateways: application specific code intercepts, processes and/or relays application specific packets
 - e.g., email of telnet gateways
 - application gateway code can be security hardened
 - can log all activity

Secure Email

• Requirements:
 – Secrecy
 – Sender authentication
 – Message integrity
 – Receiver authentication

• Secrecy
 – Can use public keys to encrypt messages
 • Inefficient for long messages
 – Use symmetric keys
 • Alice generates a symmetric key K
 • Encrypt message M with K
 • Encrypt K with E_B
 • Send K(M), E_B(K)
 • Bob decrypts using his private key, gets K, decrypts K(M)
Secure Email

• Authentication and Integrity (with no secrecy)
 – Alice applies hash function H to M (H can be MD5)
 – Creates a digital signature \(D_A(H(M)) \)
 – Send M, \(D_A(H(M)) \) to Bob

• Putting it all together
 – Compute \(H(M) \), \(D_A(H(M)) \)
 – \(M' = \{ H(M), D_A(H(M)) \} \)
 – Generate symmetric key K, compute K(M’)
 – Encrypt K as \(E_B(K) \)
 – Send K(M’), \(E_B(K) \)

• Used in PGP (pretty good privacy)

Secure Sockets Layer (SSL)

• SSL: Developed by Netscape
 – Provides data encryption and authentication between web server and client
 – SSL lies above the transport layer
 – Useful for Internet Commerce, secure mail access (IMAP)
 – Features:
 • SSL server authentication
 • Encrypted SSL session
 • SSL client authentication
Secure Socket Layer

- Protocol: https instead of http
 - Browser -> Server: B’s SSL version and preferences
 - S->B: S’s SSL version, preferences, and certificate
 - Certificate: server’s RSA public key encrypted by CA’s private key
 - B: uses its list of CAs and public keys to decrypt S’s public key
 - B->S: generate K, encrypt K with with E_S
 - B->S: “future messages will be encrypted’, and K(m)
 - S->B: “future messages will be encrypted”, and K(m)
 - SSL session begins…

SSL

- Homework: get your own digital certificate
 - Click on “security” icon (next to “print” icon) in Netscape 4.7
 - Click on “Certificates” and then on “obtain your certificate”
 - Send an email to yourself signed with your certificate
 - Also examine listed of trusted CAs built into the browser
Example: Kerberos (1)

- Authentication in Kerberos.

Electronic Payment Systems (1)

- Payment systems based on direct payment between customer and merchant.
 a) Paying in cash.
 b) Using a check.
 c) Using a credit card.
E-cash

- The principle of anonymous electronic cash using blind signatures.

Secure Electronic Transactions (SET)

- The different steps in SET.
Security: conclusion

key concerns:
• encryption
• authentication
• key exchange

also:
• increasingly an important area as network connectivity increases
• digital signatures, digital cash, authentication, increasingly important
• an important social concern
• further reading:
 – Crypto Policy Perspectives: S. Landau et al., Aug 1994 CACM
 – www.eff.org