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Last Class

•  Distributed Snapshots 
– Termination detection 

•  Election algorithms 
– Bully 
– Ring 
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Today: Still More Canonical Problems

•  Distributed synchronization and mutual exclusion 

•  Distributed transactions 
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Distributed Synchronization

•  Distributed system with multiple processes may need to 
share data or access shared data structures 
– Use critical sections with mutual exclusion 

•  Single process with multiple threads 
– Semaphores, locks, monitors 

•  How do you do this for multiple processes in a 
distributed system? 
– Processes may be running on different machines 

•  Solution: lock mechanism for a distributed environment 
– Can be centralized or distributed 
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Centralized Mutual Exclusion

•  Assume processes are numbered 
•  One process is elected coordinator (highest ID process) 
•  Every process needs to check with coordinator before 

entering the critical section 
•  To obtain exclusive access: send request, await reply 
•  To release: send release message 
•  Coordinator: 

– Receive request: if available and queue empty, send grant; if 
not, queue request 

– Receive release: remove next request from queue and send 
grant 
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Mutual Exclusion:  
A Centralized Algorithm

a)  Process 1 asks the coordinator for permission to enter a critical region.  
Permission is granted 

b)  Process 2 then asks permission to enter the same critical region.  The 
coordinator does not reply. 

c)  When process 1 exits the critical region, it tells the coordinator, when then 
replies to 2 
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Properties

•  Simulates centralized lock using blocking calls 
•  Fair: requests are granted the lock in the order they were received 
•  Simple: three messages per use of a critical section (request, grant, 

release) 
•  Shortcomings: 

–  Single point of failure 
–  How do you detect a dead coordinator? 

•  A process can not distinguish between “lock in use” from a dead 
coordinator 

–  No response from coordinator in either case 
–  Performance bottleneck in large distributed systems 
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Decentralized Algorithm 

•  Use voting  
•  Assume n replicas and a coordinator per replica 
•  To acquire lock, need majority vote  m > n/2 

coordinators 
– Non blocking: coordinators returns OK or “no” 

•  Coordinator crash => forgets previous votes 
– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k 

– Atleast 2m-n need to reset to violate correctness 
• ∑ 2m-n 

nP(k) 
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Distributed Algorithm

•  [Ricart and Agrawala]: needs 2(n-1) messages 
•  Based on event ordering and time stamps 

–  Assumes total ordering of events in the system (Lamport’s clock) 
•  Process k enters critical section as follows 

–   Generate new time stamp TSk = TSk+1 
–  Send request(k,TSk) all other n-1 processes 
–  Wait until reply(j)  received from all other processes 
–  Enter critical section 

•  Upon receiving a request message, process j 
–  Sends reply if no contention 
–  If already in critical section, does not reply, queue request 
–  If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else 

queue 
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A Distributed Algorithm

a)  Two processes want to enter the same critical region at the same 
moment. 

b)  Process 0 has the lowest timestamp, so it wins. 
c)  When process 0 is done, it sends an OK also, so 2 can now enter the 

critical region. 
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Properties

•  Fully decentralized 

•  N points of failure! 

•  All processes are involved in all decisions 
– Any overloaded process can become a bottleneck 
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A Token Ring Algorithm

a)  An unordered group of processes on a network.   
b)  A logical ring constructed in software. 

•  Use a token to arbitrate access to critical section 
•  Must wait for token before entering CS 
•  Pass the token to neighbor once done or if not interested 
•  Detecting token loss in non-trivial 

Computer Science Lecture 13, page 12 CS677: Distributed OS 

Comparison

•  A comparison of four mutual exclusion algorithms. 

Algorithm Messages per 
entry/exit 

Delay before entry (in 
message times) Problems 

Centralized 3 2 Coordinator crash 

Decentralized 3mk 2m starvation 

Distributed 2 ( n – 1 ) 2 ( n – 1 ) Crash of any 
process 

Token ring 1 to ∞ 0 to n – 1 Lost token, process 
crash 



3/25/08 

7 

Computer Science Lecture 13, page 13 CS677: Distributed OS 

Transactions
• Transactions provide higher level 
mechanism for atomicity of 
processing in distributed systems 

–  Have their origins in databases 

• Banking example: Three 
accounts A:$100, B:$200, C:$300 

–  Client 1:  transfer $4 from A to B 
–  Client 2: transfer $3 from C to B 

• Result can be inconsistent unless 
certain properties are imposed on 
the accesses 

Client 1 Client 2 
Read A: $100 
Write A: $96 

Read C: $300 
Write C:$297 

Read B: $200 
Read B: $200 
Write B:$203 

Write B:$204 
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ACID Properties

• Atomic: all or nothing 
• Consistent: transaction takes 
system from one consistent state to 
another 
• Isolated: Immediate effects are 
not visible to other (serializable) 
• Durable: Changes are permanent 
once transaction completes 
(commits) 

Client 1 Client 2 
Read A: $100 
Write A: $96 
Read B: $200 
Write B:$204 

Read C: $300 
Write C:$297 
Read B: $204 
Write B:$207 



3/25/08 

8 

Computer Science Lecture 13, page 15 CS677: Distributed OS 

Transaction Primitives

Example: airline reservation 
Begin_transaction
 if(reserve(NY,Paris)==full) Abort_transaction
 if(reserve(Paris,Athens)==full)Abort_transaction
 if(reserve(Athens,Delhi)==full) Abort_transaction
End_transaction

Primitive Description 

BEGIN_TRANSACTION Make the start of a transaction 

END_TRANSACTION Terminate the transaction and try to commit 

ABORT_TRANSACTION Kill the transaction and restore the old values 

READ Read data from a file, a table, or otherwise 

WRITE Write data to a file, a table, or otherwise 
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Distributed Transactions

a)  A nested transaction 
b)  A distributed transaction 
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Implementation: Private Workspace 
•  Each transaction get copies of all files, objects 
•  Can optimize for reads by not making copies 
•  Can optimize for writes by copying only what is required 
•  Commit requires making local workspace global 
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Option 2: Write-ahead Logs

•  In-place updates: transaction makes changes directly to all files/objects 
•  Write-ahead log: prior to making change, transaction writes to log on stable 

storage 
–  Transaction ID, block number, original value, new value 

•  Force logs on commit 
•  If abort, read log records and undo changes [rollback] 
•  Log can be used to rerun transaction after failure 

•  Both workspaces and logs work for distributed transactions 
•  Commit needs to be atomic [will return to this issue in Ch. 7] 



3/25/08 

10 

Computer Science Lecture 13, page 19 CS677: Distributed OS 

Writeahead Log Example

•  a) A transaction 
•  b) – d) The log before each statement is executed 

x = 0; 
y = 0; 
BEGIN_TRANSACTION; 
  x = x + 1; 
  y = y + 2 
  x = y * y; 
END_TRANSACTION; 
              (a)  

Log 

[x = 0 / 1] 

  (b) 

Log 

[x = 0 / 1] 
[y = 0/2] 

   (c)    

Log 

[x = 0 / 1] 
[y = 0/2] 
[x = 1/4] 

    (d) 
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Concurrency Control

•  Goal: Allow several transactions to be executing 
simultaneously such that 
– Collection of manipulated data item is left in a consistent state 

•  Achieve consistency by ensuring data items are accessed 
in an specific order  
– Final result should be same as if each transaction ran 

sequentially 

•  Concurrency control can implemented in a layered fashion 
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Concurrency Control Implementation

•  General organization of managers for handling transactions. 
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Distributed Concurrency Control
•  General organization of 

managers for handling 
distributed transactions. 



3/25/08 

12 

Computer Science Lecture 13, page 23 CS677: Distributed OS 

Serializability

•  Key idea: properly schedule conflicting operations 
•  Conflict possible if at least one operation is write 

–  Read-write conflict 
–  Write-write conflict 

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 1; 
END_TRANSACTION 

              (a) 

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 2; 
END_TRANSACTION 

              (b) 

BEGIN_TRANSACTION 
  x = 0; 
  x = x + 3; 
END_TRANSACTION 

              (c) 

Schedule 1 x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3 Legal 

Schedule 2 x = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3; Legal 

Schedule 3 x = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3; Illegal 
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Optimistic Concurrency Control

•  Transaction does what it wants and validates changes prior to 
commit 
–  Check if files/objects have been changed by committed transactions since 

they were opened 
–  Insight: conflicts are rare, so works well most of the time 

•  Works well with private workspaces 
•  Advantage:  

–  Deadlock free 
–  Maximum parallelism 

•  Disadvantage: 
–  Rerun transaction if aborts 
–  Probability of conflict rises substantially at high loads 

•  Not used widely 
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Two-phase Locking

•  Widely used concurrency control technique 
•  Scheduler acquires all necessary locks in growing phase, 

releases locks in shrinking phase 
– Check if operation on data item x conflicts with existing locks 

•  If so, delay transaction. If not, grant a lock on x 
– Never release a lock until data manager finishes operation on x 
– One a lock is released, no further locks can be granted 

•  Problem: deadlock possible 
– Example: acquiring two locks in different order 

•  Distributed 2PL versus centralized 2PL 
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Two-Phase Locking 

•  Two-phase locking. 
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Strict Two-Phase Locking 

•  Strict two-phase locking. 
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Timestamp-based Concurrency Control

•  Each transaction Ti is given timestamp ts(Ti) 
•  If Ti wants to do an operation that conflicts with Tj 

– Abort Ti if ts(Ti) < ts(Tj) 
•  When a transaction aborts, it must restart with a new 

(larger) time stamp 
•  Two values for each data item x 

– Max-rts(x): max time stamp of a transaction that read x 
– Max-wts(x): max time stamp of a transaction that wrote x 
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Reads and Writes using Timestamps

•  Readi(x) 
–  If ts(Ti) < max-wts(x) then Abort Ti 

– Else 
• Perform Ri(x) 
• Max-rts(x) = max(max-rts(x), ts(Ti)) 

•  Writei(x) 
–  If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti 

– Else 
• Perform Wi(x) 
• Max-wts(x) = ts(Ti) 
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Pessimistic Timestamp Ordering

•  Concurrency control using timestamps. 


