
3/25/08

1

Computer Science Lecture 13, page 1 CS677: Distributed OS

Last Class

•  Distributed Snapshots
– Termination detection

•  Election algorithms
– Bully
– Ring

Computer Science Lecture 13, page 2 CS677: Distributed OS

Today: Still More Canonical Problems

•  Distributed synchronization and mutual exclusion

•  Distributed transactions

3/25/08

2

Computer Science Lecture 13, page 3 CS677: Distributed OS

Distributed Synchronization

•  Distributed system with multiple processes may need to
share data or access shared data structures
– Use critical sections with mutual exclusion

•  Single process with multiple threads
– Semaphores, locks, monitors

•  How do you do this for multiple processes in a
distributed system?
– Processes may be running on different machines

•  Solution: lock mechanism for a distributed environment
– Can be centralized or distributed

Computer Science Lecture 13, page 4 CS677: Distributed OS

Centralized Mutual Exclusion

•  Assume processes are numbered
•  One process is elected coordinator (highest ID process)
•  Every process needs to check with coordinator before

entering the critical section
•  To obtain exclusive access: send request, await reply
•  To release: send release message
•  Coordinator:

– Receive request: if available and queue empty, send grant; if
not, queue request

– Receive release: remove next request from queue and send
grant

3/25/08

3

Computer Science Lecture 13, page 5 CS677: Distributed OS

Mutual Exclusion:  
A Centralized Algorithm

a)  Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b)  Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c)  When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

Computer Science Lecture 13, page 6 CS677: Distributed OS

Properties

•  Simulates centralized lock using blocking calls
•  Fair: requests are granted the lock in the order they were received
•  Simple: three messages per use of a critical section (request, grant,

release)
•  Shortcomings:

–  Single point of failure
–  How do you detect a dead coordinator?

•  A process can not distinguish between “lock in use” from a dead
coordinator

–  No response from coordinator in either case
–  Performance bottleneck in large distributed systems

3/25/08

4

Computer Science Lecture 13, page 7 CS677: Distributed OS

Decentralized Algorithm

•  Use voting
•  Assume n replicas and a coordinator per replica
•  To acquire lock, need majority vote m > n/2

coordinators
– Non blocking: coordinators returns OK or “no”

•  Coordinator crash => forgets previous votes
– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k

– Atleast 2m-n need to reset to violate correctness
• ∑ 2m-n

nP(k)

Computer Science Lecture 13, page 8 CS677: Distributed OS

Distributed Algorithm

•  [Ricart and Agrawala]: needs 2(n-1) messages
•  Based on event ordering and time stamps

–  Assumes total ordering of events in the system (Lamport’s clock)
•  Process k enters critical section as follows

–  Generate new time stamp TSk = TSk+1
–  Send request(k,TSk) all other n-1 processes
–  Wait until reply(j) received from all other processes
–  Enter critical section

•  Upon receiving a request message, process j
–  Sends reply if no contention
–  If already in critical section, does not reply, queue request
–  If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else

queue

3/25/08

5

Computer Science Lecture 13, page 9 CS677: Distributed OS

A Distributed Algorithm

a)  Two processes want to enter the same critical region at the same
moment.

b)  Process 0 has the lowest timestamp, so it wins.
c)  When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.

Computer Science Lecture 13, page 10 CS677: Distributed OS

Properties

•  Fully decentralized

•  N points of failure!

•  All processes are involved in all decisions
– Any overloaded process can become a bottleneck

3/25/08

6

Computer Science Lecture 13, page 11 CS677: Distributed OS

A Token Ring Algorithm

a)  An unordered group of processes on a network.
b)  A logical ring constructed in software.

•  Use a token to arbitrate access to critical section
•  Must wait for token before entering CS
•  Pass the token to neighbor once done or if not interested
•  Detecting token loss in non-trivial

Computer Science Lecture 13, page 12 CS677: Distributed OS

Comparison

•  A comparison of four mutual exclusion algorithms.

Algorithm Messages per
entry/exit

Delay before entry (in
message times) Problems

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2 (n – 1) 2 (n – 1) Crash of any
process

Token ring 1 to ∞ 0 to n – 1 Lost token, process
crash

3/25/08

7

Computer Science Lecture 13, page 13 CS677: Distributed OS

Transactions
• Transactions provide higher level
mechanism for atomicity of
processing in distributed systems

–  Have their origins in databases

• Banking example: Three
accounts A:$100, B:$200, C:$300

–  Client 1: transfer $4 from A to B
–  Client 2: transfer $3 from C to B

• Result can be inconsistent unless
certain properties are imposed on
the accesses

Client 1 Client 2
Read A: $100
Write A: $96

Read C: $300
Write C:$297

Read B: $200
Read B: $200
Write B:$203

Write B:$204

Computer Science Lecture 13, page 14 CS677: Distributed OS

ACID Properties

• Atomic: all or nothing
• Consistent: transaction takes
system from one consistent state to
another
• Isolated: Immediate effects are
not visible to other (serializable)
• Durable: Changes are permanent
once transaction completes
(commits)

Client 1 Client 2
Read A: $100
Write A: $96
Read B: $200
Write B:$204

Read C: $300
Write C:$297
Read B: $204
Write B:$207

3/25/08

8

Computer Science Lecture 13, page 15 CS677: Distributed OS

Transaction Primitives

Example: airline reservation
Begin_transaction
 if(reserve(NY,Paris)==full) Abort_transaction
 if(reserve(Paris,Athens)==full)Abort_transaction
 if(reserve(Athens,Delhi)==full) Abort_transaction
End_transaction

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

Computer Science Lecture 13, page 16 CS677: Distributed OS

Distributed Transactions

a)  A nested transaction
b)  A distributed transaction

3/25/08

9

Computer Science Lecture 13, page 17 CS677: Distributed OS

Implementation: Private Workspace
•  Each transaction get copies of all files, objects
•  Can optimize for reads by not making copies
•  Can optimize for writes by copying only what is required
•  Commit requires making local workspace global

Computer Science Lecture 13, page 18 CS677: Distributed OS

Option 2: Write-ahead Logs

•  In-place updates: transaction makes changes directly to all files/objects
•  Write-ahead log: prior to making change, transaction writes to log on stable

storage
–  Transaction ID, block number, original value, new value

•  Force logs on commit
•  If abort, read log records and undo changes [rollback]
•  Log can be used to rerun transaction after failure

•  Both workspaces and logs work for distributed transactions
•  Commit needs to be atomic [will return to this issue in Ch. 7]

3/25/08

10

Computer Science Lecture 13, page 19 CS677: Distributed OS

Writeahead Log Example

•  a) A transaction
•  b) – d) The log before each statement is executed

x = 0;
y = 0;
BEGIN_TRANSACTION;
 x = x + 1;
 y = y + 2
 x = y * y;
END_TRANSACTION;
 (a)

Log

[x = 0 / 1]

 (b)

Log

[x = 0 / 1]
[y = 0/2]

 (c)

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

 (d)

Computer Science Lecture 13, page 20 CS677: Distributed OS

Concurrency Control

•  Goal: Allow several transactions to be executing
simultaneously such that
– Collection of manipulated data item is left in a consistent state

•  Achieve consistency by ensuring data items are accessed
in an specific order
– Final result should be same as if each transaction ran

sequentially

•  Concurrency control can implemented in a layered fashion

3/25/08

11

Computer Science Lecture 13, page 21 CS677: Distributed OS

Concurrency Control Implementation

•  General organization of managers for handling transactions.

Computer Science Lecture 13, page 22 CS677: Distributed OS

Distributed Concurrency Control
•  General organization of

managers for handling
distributed transactions.

3/25/08

12

Computer Science Lecture 13, page 23 CS677: Distributed OS

Serializability

•  Key idea: properly schedule conflicting operations
•  Conflict possible if at least one operation is write

–  Read-write conflict
–  Write-write conflict

BEGIN_TRANSACTION
 x = 0;
 x = x + 1;
END_TRANSACTION

 (a)

BEGIN_TRANSACTION
 x = 0;
 x = x + 2;
END_TRANSACTION

 (b)

BEGIN_TRANSACTION
 x = 0;
 x = x + 3;
END_TRANSACTION

 (c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

Computer Science Lecture 13, page 24 CS677: Distributed OS

Optimistic Concurrency Control

•  Transaction does what it wants and validates changes prior to
commit
–  Check if files/objects have been changed by committed transactions since

they were opened
–  Insight: conflicts are rare, so works well most of the time

•  Works well with private workspaces
•  Advantage:

–  Deadlock free
–  Maximum parallelism

•  Disadvantage:
–  Rerun transaction if aborts
–  Probability of conflict rises substantially at high loads

•  Not used widely

3/25/08

13

Computer Science Lecture 13, page 25 CS677: Distributed OS

Two-phase Locking

•  Widely used concurrency control technique
•  Scheduler acquires all necessary locks in growing phase,

releases locks in shrinking phase
– Check if operation on data item x conflicts with existing locks

•  If so, delay transaction. If not, grant a lock on x
– Never release a lock until data manager finishes operation on x
– One a lock is released, no further locks can be granted

•  Problem: deadlock possible
– Example: acquiring two locks in different order

•  Distributed 2PL versus centralized 2PL

Computer Science Lecture 13, page 26 CS677: Distributed OS

Two-Phase Locking

•  Two-phase locking.

3/25/08

14

Computer Science Lecture 13, page 27 CS677: Distributed OS

Strict Two-Phase Locking

•  Strict two-phase locking.

Computer Science Lecture 13, page 28 CS677: Distributed OS

Timestamp-based Concurrency Control

•  Each transaction Ti is given timestamp ts(Ti)
•  If Ti wants to do an operation that conflicts with Tj

– Abort Ti if ts(Ti) < ts(Tj)
•  When a transaction aborts, it must restart with a new

(larger) time stamp
•  Two values for each data item x

– Max-rts(x): max time stamp of a transaction that read x
– Max-wts(x): max time stamp of a transaction that wrote x

3/25/08

15

Computer Science Lecture 13, page 29 CS677: Distributed OS

Reads and Writes using Timestamps

•  Readi(x)
–  If ts(Ti) < max-wts(x) then Abort Ti

– Else
• Perform Ri(x)
• Max-rts(x) = max(max-rts(x), ts(Ti))

•  Writei(x)
–  If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti

– Else
• Perform Wi(x)
• Max-wts(x) = ts(Ti)

Computer Science Lecture 13, page 30 CS677: Distributed OS

Pessimistic Timestamp Ordering

•  Concurrency control using timestamps.

