Last Class: Naming

* Naming
— DNS
— LDAP

* Physical clocks

* Clock synchronization algorithms

— Cristian’s algorithm
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Today: More Canonical Problems

* Synchronization

Logical clocks

 Causality
— Vector timestamps

* QGlobal state and termination detection
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Berkeley Algorithm

* Used in systems without UTC receiver
— Keep clocks synchronized with one another
— One computer is master, other are slaves
— Master periodically polls slaves for their times
* Average times and return differences to slaves
* Communication delays compensated as in Cristian’s algo
— Failure of master => election of a new master
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Berkeley Algorithm

Time daemon
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a) The time daemon asks all the other machines for their clock values
b) The machines answer
The time daemon tells everyone how to adjust their clock

c)
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Distributed Approaches

* Both approaches studied thus far are centralized

* Decentralized algorithms: use resync intervals
— Broadcast time at the start of the interval
— Collect all other broadcast that arrive in a period S
— Use average value of all reported times
— Can throw away few highest and lowest values
* Approaches in use today
— rdate: synchronizes a machine with a specified machine
— Network Time Protocol (NTP)
 Uses advanced techniques for accuracies of 1-50 ms
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Global Positioning System
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« Computing a position in a two-dimensional space.
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Global Positioning System

» Real world facts that complicate GPS

1 .It takes a while before data on a
satellite’s position reaches the
receiver.

2.The receiver’s clock is generally not
in synch with that of a satellite.
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GPS Basics

* D, — deviation of receiver from actual time

 Beacon with timestamp T, received at T,
— Delay D, =(T,,,—T; + D,
— Distance d; =c (T, T))
— Also d;=sqrt[ (x;-x,)* + (y;7y,)* + (z-2,)° ]

* Four unknowns, need 4 satellites.
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Clock Synchronization in Wireless
Networks

Message preparation

Time spent in NIC
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Critical path
(b)
* Reference broadcast sync (RBS): receivers synchronize with one
another using RB server

— Mutual offset =T, - T;;  (can average over multiple readings)
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Network Time Protocol

dTreq dTres

* Widely used standard - based on Cristian’s algo
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Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
* Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the time at which they occurred
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Event Ordering

* Problem: define a total ordering of all events that occur
in a system

* Events in a single processor machine are totally ordered
¢ In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
* Key idea [Lamport ]

— Processes exchange messages

— Message must be sent before received
— Send/receive used to order events (and synchronize clocks)
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Happened Before Relation

If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

If A represents sending of a message and B is the receipt of this
message, then A -> B
Relation is transitive:

— A>BandB>C ==A->C
Relation is undefined across processes that do not exchange
messages

— Partial ordering on events
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Event Ordering Using HB

Goal: define the notion of time of an event such that
— If A-> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)
Solution:
— Each processor maintains a logical clock LC;
— Whenever an event occurs locally at I, LC;= LC+1
— When i sends message to j, piggyback Lc;
— When j receives message from i
¢ If LG, <LC; then LC; = LC; +1 else do nothing
— Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Example: Totally-Ordered
Multicasting

% Update1 Update 2 _i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1
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Causality

* Lamport’s logical clocks
— If A-> Bthen C(4) < C(B)
— Reverse is not true!!
* Nothing can be said about events by comparing time-stamps!
* If C(A) < C(B), then 7?
* Need to maintain causality
— Ifa-> b then a is casually related to b
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes
— Need a time-stamping mechanism such that:
» If T(4) < T(B) then A4 should have causally preceded B
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Vector Clocks

 Each process 7 maintains a vector V,
— V.[i] : number of events that have occurred at i
— V.[j] : number of events I knows have occurred at process j

« Update vector clocks as follows
— Local event: increment V;[I]
— Send a message :piggyback entire vector V
— Receipt of a message: V/k] = max( V,[k],Vi[k] )
* Receiver is told about how many events the sender knows
occurred at another process k

« Also Vi[i] =V [i]+1
» Exercise: prove that if V(4)<V(B), then A causally
precedes B and the other way around.
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Enforcing Causal Communication

o VC,=(1,0,0) VC,=(1,1,0)
PO l I
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Global State

* Global state of a distributed system
— Local state of each process
— Messages sent but not received (state of the queues)

* Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection

* Problem: how can you figure out the state of a
distributed system?
— Each process is independent
— No global clock or synchronization

 Distributed snapshot: a consistent global state
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Global State (1)

Consistent cut Inconsistent cut
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m1 ;_\17,—-*“/ - m3 m1 _,,,-g’/ m3
P2 e ¥ P2 o
l\\ m2 \\\7_7 m2
P3 ‘ X P3 O
N \)\‘,/’ Y
Sender of m2 </:annot
be identified with this cut
(@ (b)
a) A consistent cut
b) An inconsistent cut
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Distributed Snapshot Algorithm

» Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can initiate the algorithm

— Checkpoint local state
— Send marker on every outgoing channel
* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel
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Distributed Snapshot

* A process finishes when

— It receives a marker on each incoming channel and processes

them all
— State: local state plus state of all channels
M
— Send state to initiator / T
. A~
* Any process can initiate snapshot T

C

— Multiple snapshots may be in progress

* Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)
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Snapshot Algorithm Example

Incoming Outgoing
message Process State message

W A ¥
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Q
Local
Marker Eé filesystem

(a)
a)  Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
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(b) (© (d)

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message

d)  Q receives a marker for its incoming channel and finishes recording the state
of the incoming channel
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