Last Class: RPCs

* RPCs make distributed computations look like local
computations

* Issues:
— Parameter passing
— Binding
— Failure handling

m Computer Science CS677: Distributed OS Lecture 8, page 1
UMASS

Today:

* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

m Computer Science CS677: Distributed OS Lecture 8, page 2
UMASS

Lightweight RPCs

* Many RPCs occur between client and server on same
machine

— Need to optimize RPCs for this special case => use a
lightweight RPC mechanism (LRPC)

« Server § exports interface to remote procedures
* Client C on same machine imports interface

* OS kernel creates data structures including an argument
stack shared between S and C

m Computer Science CS677: Distributed OS Lecture 8, page 3
UMASS

Lightweight RPCs

* RPC execution
— Push arguments onto stack
— Trap to kernel
— Kernel changes mem map of client to server address space
— Client thread executes procedure (OS upcall)
— Thread traps to kernel upon completion
— Kernel changes the address space back and returns control to
client

e (Called “doors” in Solaris

m Computer Science CS677: Distributed OS Lecture 8, page 4
UMASS

Doors

Computer
Client process Server process
server_door(...) €———_
{
'd'oorfretum(...); Em—
main
{ 0 ?ﬁain()
;i:ro(p;::'ll((%oor_)r?ame‘ ok Register door | fd= door_create(...);
o .. T fattach(fd, door_name. ...):
} .=
v
Operating system k
~ < -

Invoke registered door

at other process Return to calling process

Which RPC to use? - run-time bit allows stub to choose between
LRPC and RPC

m Computer Science CS677: Distributed OS Lecture 8, page 5
UMASS

Other RPC Models

* Asynchronous RPC

— Request-reply behavior often not needed

— Server can reply as soon as request is received and execute procedure later
* Deferred-synchronous RPC

— Use two asynchronous RPCs
— Client needs a reply but can’t wait for it; server sends reply via another

asynchronous RPC
* One-way RPC
— Client does not even wait for an ACK from the server
— Limitation: reliability not guaranteed (Client does not know if procedure

was executed by the server).

m Computer Science CS677: Distributed OS Lecture 8, page 6
UMASS

Asynchronous RPC

Client Wait for result Client Wait for acceptance
] v < "
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —»
and return results
@ (b)

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

m Computer Science CS677: Distributed OS Lecture 8, page 7
UMASS

Deferred Synchronous RPC

¢ A client and server interacting through two asvnchronous RPCs

Wait for Interrupt client
acceptance
Client oepan A\
A 3
Call remote Return Ret
d from call eturn
procedure results Acknowledge
Accept
Request request
Server --------------- S
Call local procedure \ Time —»
Call client with
one-way RPC

m Computer Science CS677: Distributed OS Lecture 8, page 8
UMASS

Remote Method Invocation (RMI)

* RPCs applied to objects, i.e., instances of a class

— Class: object-oriented abstraction; module with data and
operations

— Separation between interface and implementation

— Interface resides on one machine, implementation on another
* RMIs support system-wide object references

— Parameters can be object references

m Computer Science CS677: Distributed OS Lecture 8, page 9
UMASS

Distributed Objects

Client machine Server machine
Object
Client Server—/

as object

invokes »

thod
a metho A4 / Skeleton /ﬁ\\\lnterface
invokes — [|
\—EL—‘ same method Skeleton

at object A
Client OS Server OS

I B

A .

B s
Same
Client interface LI« Method

Network
Marshalled invocation
is passed across network

* When a client binds to a distributed object, load the interface
(“proxy”) into client address space
— Proxy analogous to stubs

» Server stub is referred to as a skeleton

m Computer Science CS677: Distributed OS Lecture 8, page 10
UMASS

Proxies and Skeletons

* Proxy: client stub
— Maintains server ID, endpoint, object ID
— Sets up and tears down connection with the server
— [Java:] does serialization of local object parameters
— In practice, can be downloaded/constructed on the fly (why
can’t this be done for RPCs in general?)
« Skeleton: server stub

— Does deserialization and passes parameters to server and sends
result to proxy

m Computer Science CS677: Distributed OS Lecture 8, page 11
UMASS

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ..; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)
Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

m Computer Science CS677: Distributed OS Lecture 8, page 12
UMASS

Parameter Passing

* Less restrictive than RPCs.
— Supports system-wide object references

— [Java] pass local objects by value, pass remote objects by reference

Machine A Machine B

Local Remote object
Remote 02
reference L1 \ reference R1 B

. . = \
O — A \
Client code with |
RMI to server at C |

(proxy) New local

reference

Copy of O1 /”

!

Remote
invocation with

L1and R1as
parameters

o |

A

Machine C

Copy of R1to O2

Server code

(method implementation)

m Computer Science
UMASS

CS677: Distributed OS Lecture 8, page 13

DCE Distributed-Object Model

Server machine Server machine

Dynamic
(private) object
’ Named (shared)
! object
Dynamic i Dynamic . A S
(private) object | | | (private) object S/ i N\
4 5 |y v : N
/ i \ Remote P i N
/ | ‘@ reference ; N
.’, 5 . . ‘ ‘.
Client #1 Client #2 Client #3 Client #1 Client #2 Client #3
(@) (b)

a) Distributed dynamic objects in DCE.
b) Distributed named objects

m Computer Science
UMASS

CS677: Distributed OS Lecture 8, page 14

Java RMI

* Server

— Defines interface and implements interface methods

— Server program

* Creates server object and registers object with “remote
object” registry

* Client

— Looks up server in remote object registry

— Uses normal method call syntax for remote methods
 Java tools

— Rmiregistry: server-side name server

— Rmic: uses server interface to create client and server stubs

m Computer Science CS677: Distributed OS Lecture 8, page 15
UMASS

Java RMI and Synchronization

 Java supports Monitors: synchronized objects
— Serializes accesses to objects
— How does this work for remote objects?
* Options: block at the client or the server
* Block at server
— Can synchronize across multiple proxies
— Problem: what if the client crashes while blocked?
* Block at proxy
— Need to synchronize clients at different machines
— Explicit distributed locking necessary
 Java uses proxies for blocking
— No protection for simultaneous access from different clients
— Applications need to implement distributed locking

m Computer Science CS677: Distributed OS Lecture 8, page 16
UMASS

Message-oriented Transient
Communication

* Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server T
[socket 9 bind | listen accept}—Kﬁ r:ad > write })—H close |

1
! \

! . . !
; Communication ‘,
! \

Synchronization point —»

i

, A |
socket #uonnectw close |
Client

m Computer Science CS677: Distributed OS Lecture 8, page 17
UMASS

|- —

Berkeley Socket Primitives

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

m Computer Science CS677: Distributed OS Lecture 8, page 18
UMASS

Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

» Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems
— Need an interface with more advanced primitives
* Large number of incompatible proprietary libraries and protocols
— Need for a standard interface
* Message-passing interface (MPI)
— Hardware independent

— Designed for parallel applications (uses transient communication)

* Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair

m Computer Science CS677: Distributed OS Lecture 8, page 19
UMASS

MPI Primitives

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none
MPI_irecv Check if there is an incoming message, but do not block
aﬂs Computer Science CS677: Distributed OS Lecture 8, page 20

10

