
1

CS677: Distributed OSComputer Science Lecture 6, page 1

Communication in Distributed Systems

• Issues in communication (today)
• Message-oriented Communication
• Remote Procedure Calls

– Transparency but poor for passing references
• Remote Method Invocation

– RMIs are essentially RPCs but specific to remote objects
– System wide references passed as parameters

• Stream-oriented Communication

CS677: Distributed OSComputer Science Lecture 6, page 2

Communication Between Processes

• Unstructured communication
– Use shared memory or shared data structures

• Structured communication
– Use explicit messages (IPCs)

• Distributed Systems: both need low-level
communication support (why?)



2

CS677: Distributed OSComputer Science Lecture 6, page 3

Communication Protocols

• Protocols are agreements/rules on communication
• Protocols could be connection-oriented or connectionless

2-1

CS677: Distributed OSComputer Science Lecture 6, page 4

Layered Protocols

• A typical message as it appears on the network.

2-2



3

CS677: Distributed OSComputer Science Lecture 6, page 5

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

CS677: Distributed OSComputer Science Lecture 6, page 6

Middleware Protocols
• Middleware: layer that resides between an OS and an application

– May implement general-purpose protocols that warrant their own layers
• Example: distributed commit

2-5



4

CS677: Distributed OSComputer Science Lecture 6, page 7

Client-Server Communication Model

• Structure: group of servers offering service to clients
• Based on a request/response paradigm
• Techniques:

– Socket, remote procedure calls (RPC), Remote Method
Invocation (RMI)

kernel

client

kernel kernel kernel

file 
server

process 
server

terminal 
server

CS677: Distributed OSComputer Science Lecture 6, page 8

Issues in Client-Server Communication

• Addressing
• Blocking versus non-blocking
• Buffered versus unbuffered
• Reliable versus unreliable
• Server architecture: concurrent versus sequential
• Scalability



5

CS677: Distributed OSComputer Science Lecture 6, page 9

Addressing Issues

•Question: how is the server
located?
•Hard-wired address

– Machine address and process
address are known a priori

•Broadcast-based
– Server chooses address from a

sparse address space
– Client broadcasts request
– Can cache response for future

•Locate address via name server

user server

user server

user serverNS

CS677: Distributed OSComputer Science Lecture 6, page 10

Blocking versus Non-blocking

• Blocking communication (synchronous)
– Send blocks until message is actually sent
– Receive blocks until message is actually received

• Non-blocking communication (asynchronous)
– Send returns immediately
– Return does not block either

• Examples:



6

CS677: Distributed OSComputer Science Lecture 6, page 11

Buffering Issues

• Unbuffered communication
– Server must call receive before

client can call send

• Buffered communication
– Client send to a mailbox
– Server receives from a mailbox

user server

user server

CS677: Distributed OSComputer Science Lecture 6, page 12

Reliability

• Unreliable channel
– Need acknowledgements (ACKs)
– Applications handle ACKs
– ACKs for both request and reply

• Reliable channel
– Reply acts as ACK for request

• Reliable communication on
unreliable channels
– Transport protocol handles lost

messages

request

ACK
reply

ACK

U
se

r

Se
rv

er

request
reply

U
se

r

Se
rv

er



7

CS677: Distributed OSComputer Science Lecture 6, page 13

Server Architecture

• Sequential
– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication
• Concurrent

– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

CS677: Distributed OSComputer Science Lecture 6, page 14

Scalability

• Question:How can you scale the server capacity?
• Buy bigger machine!
• Replicate
• Distribute data and/or algorithms
• Ship code instead of data
• Cache



8

CS677: Distributed OSComputer Science Lecture 6, page 15

To Push or Pull ?

• Client-pull architecture
– Clients pull data from servers (by sending requests)
– Example: HTTP
– Pro: stateless servers, failures are each to handle
– Con: limited scalability

• Server-push architecture
– Servers push data to client
– Example: video streaming, stock tickers
– Pro: more scalable, Con: stateful servers, less resilient to failure

• When/how-often to push or pull?

CS677: Distributed OSComputer Science Lecture 6, page 16

Group Communication

• One-to-many communication: useful for distributed
applications

• Issues:
– Group characteristics:

• Static/dynamic, open/closed
– Group addressing

• Multicast, broadcast, application-level multicast (unicast)
– Atomicity
– Message ordering
– Scalability



9

CS677: Distributed OSComputer Science Lecture 6, page 17

Putting it all together: Email

• User uses mail client to compose a message
• Mail client connects to mail server
• Mail server looks up address to destination mail server
• Mail server sets up a connection and passes the mail to

destination mail server
• Destination stores mail in input buffer (user mailbox)
• Recipient checks mail at a later time

CS677: Distributed OSComputer Science Lecture 6, page 18

Email: Design Considerations

• Structured or unstructured?
• Addressing?
• Blocking/non-blocking?
• Buffered or unbuffered?
• Reliable or unreliable?
• Server architecture
• Scalability
• Push or pull?
• Group communication


