Security in Distributed Systems

- Introduction
- Cryptography
- Authentication
- Key exchange
- Readings: Tannenbaum, chapter 8
 Ross/Kurose, Ch 7

Network Security

Intruder may
- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages
Important issues:

- cryptography: secrecy of info being transmitted
- authentication: proving who you are and having correspondent prove his/her/its identity

Security in Computer Networks

User resources:

- login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)
- passwords provide little protection
Security Issues

Network resources:
- often completely unprotected from intruder eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:
- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many system-provided security measures
- users must take a more active role

Encryption

plaintext: unencrypted message
ciphertext: encrypted form of message

Intruder may
- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms
A simple encryption algorithm

Substitution cipher:

```
abcdefghijklmnopqrstuvwxyz
poiuytrewqasdfghjklmnbvcxz
```

- replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my dear

ciphertext: iepksgmyy, dz uypk

Encryption Algo (contd)

- key is pairing between plaintext characters and ciphertext characters
- **symmetric key:** sender and receiver use same key
- 26! (approx 10^{26}) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
 - 'e' most common letter, 'the' most common word
DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
 - everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56! substitution ciphers used
 - substitution: 19 stages of transformations, 16 involving functions of key

Symmetric Cryptosystems: DES (1)

(a) The principle of DES
(b) Outline of one encryption round
Symmetric Cryptosystems: DES (2)

• Details of per-round key generation in DES.

Key Distribution Problem

Problem: how do communicant agree on symmetric key?
– N communicants implies N keys

Trusted agent distribution:
– keys distributed by centralized trusted agent
– any communicant need only know key to communicate with trusted agent
– for communication between i and j, trusted agent will provide a key
Key Distribution

We will cover in more detail shortly.

Public Key Cryptography

- separate encryption/decryption keys
 - receiver makes known (!) its encryption key
 - receiver keeps its decryption key secret
- to send to receiver B, encrypt message M using B's publicly available key, EB
 - send EB(M)
- to decrypt, B applies its private decrypt key DB to receiver message:
 - computing DB(EB(M)) gives M
Public Key Cryptography

- knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- only receiver can decrypt message

Question: good encryption/decryption algorithms

RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:
- choose two prime numbers, \(p, q \) greater than \(10^{100} \)
- compute \(n=pq \) and \(z = (p-1)(q-1) \)
- choose number \(d \) which has no common factors with \(z \)
- compute \(e \) such that \(ed = 1 \) mod \(z \), i.e.,

 \[
 \text{integer-remainder}((ed) / ((p-1)(q-1))) = 1, \text{ i.e.,} \\
 ed = k(p-1)(q-1) + 1
 \]
- three numbers:
 - \(e, n \) made public
 - \(d \) kept secret
RSA (continued)

to encrypt:
• divide message into blocks, \{b_i\} of size \(j\): \(2^j < n\)
• encrypt: \(\text{encrypt}(b_i) = b_i^e \mod n\)

to decrypt:
• \(b_i = (\text{encrypt}(b_i))^d\)

to break RSA:
• need to know \(p, q\), given \(pq = n\), \(n\) known
• factoring 200 digit \(n\) into primes takes 4 billion years using known methods

RSA example

• choose \(p=3, q=11\), gives \(n=33\), \((p-1)(q-1)=z=20\)
• choose \(d=7\) since 7 and 20 have no common factors
• compute \(e = 3\), so that \(ed = k(p-1)(q-1)+1\) (note: \(k=1\) here)
Further notes on RSA

why does RSA work?
• crucial number theory result: if p, q prime then

 $b_i^{(p-1)(q-1)} \mod pq = 1$

• using mod pq arithmetic:
 $(b^e)^d = b^{ed}$

 $= b^{k(p-1)(q-1)+1}$ for some k

 $= b b^{(p-1)(q-1)} b^{(p-1)(q-1)} ... b^{(p-1)(q-1)}$

 $= b 1 1 ... 1$

 $= b$

Note: we can also encrypt with d and encrypt with e.
• this will be useful shortly

How to break RSA?

Brute force: get B's public key
• for each possible b_i in plaintext, compute b_i^e
• for each observed b_i^e, we then know b_i
• moral: choose size of b_i "big enough"
Breaking RSA

man-in-the-middle: intercept keys, spoof identity:

1: get EB
2: return my EI
3: intercept b**EI
 compute b = DI (EI(b))
 send b**EB