
THE FAILUP~. AND P~ECOVEF.Y PROBLEM FOR Pd~PLICATED DATABASES

Phi l ip A. Bernstein
Nathan Goodman

H a r v a r d U n i v e r s i t y

ABSTRACT

A replicated database is a distributed data-
base in which some data items are stored redundantly
at multiple sites. The main goal is to improve
system reliability. By storing critical data at
multiple sites, the system can operate even though
some sites have failed. However, few distributed
database systems support replicated data, because
it is difficult to manage as sites fail and recover.

A replicated data algorithm has two |)arts.
One is a discipline for reading and writing data
item copies. The other is a concurrency control
algorithm for synchronizing those operations. The
read-write discipline ensures that if one trans-
action writes logical data item x, and another
transaction reads or writes x, there is some
physical manifestation of that logical conflict.
The concurrency control algorithm synchronizes
physical conflicts; it knows nothing about logical
conflicts. In a correct replicated data algorithm,
the physical manifestation of conflicts rnust be
strong enough so that synchronizing physical
conflicts is sufficient for correctness.

This paper presents a theory for proving the
correctness of algorithms that manage replicated
data. The theory is an extension of serializabi--
lity theory. We apply it to three replicated
data algorithms: Gifford's "quorum consensus"
algorithm,Eager and Sevcik's "missing writes"
algorithm, and Computer Corporation of Ar~,erica's
~'available copies" algorithm.

Research supported by the National Science Founda-
tion, grant number MCS79-07762, and by the Office
of Naval Research, grant number N00014-80-C-674.

Authors' addresses: P.A. Bernstein, Sequoia

Systems, Inc., One Metropolitan Corp. Center,
Marlborough, MA 01752; N. Goodman, Aiken
Computation Lab., Harvard University, Cambridge,
MA 02138.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-110-5/83/008/0114 $00.75

I • I i;TRODUCT I OiL

In a one-copy distributed database, each data
item is stored at exactly one site of a distributed
system. In a replicated database, some data items
may be stored at multiple sites. In a replicated
database, when a user updates data item x, the
distributed database system (dbs) must apply the
update to one or more copies of x. When a user
reads x, the dbs must select an up-to-date copy
of x to be read. The main motivation for repli-
cated data is improved reliability [ABDG,HS]: by
storing important data at multiple sites, the dbs
can tolerate failures more gracefully.

The main correctness criteria for replicated
databases are: replica control--the multiple
copies of a data item must behave like a single
copy insofar as users can tell; and concurrency
oontro~--the effect of a concurrent execution must
be equivalent to a serial one. A replicated dbs
that achieves replica control and concurrency
control has the same input/output behavior as a
centralized, one-copy dbs that executes user
requests one at a tirae [TGGL].

The simplest way to handle replicated data is
the following. When a user updates x, the dbs
applies the update to all copies of x stored at
"up" sites. %~en a user wishes to read x, the
dbs reads any copy of x at an "up" site. Con-
currency control is by distributed two phase
locking [BG,EGLT].

Unfortunately, this simple algorithm is in-
correct. Consider a database with data items x

and y and copies Xa, Xb, Yc, Yd- Transaction
T 1 reads x and writes y; T 2 reads y and
writes x. The following execution obeys the
simple algorithm, yet is incorrect.

rl[x a] d-fails wl[Y c]

r2[Y d] a-fails w2[x b]

'rl[Xa]' denotes a read of
denotes the failure of site

x a by TI; 'd-fails'
d; and so forth. Time

moves from left-to-right. T 1 and T 2 do their
reads at approximately the same time; then sites
and d fail; then T 1 and T 2 do their writes.
This execution obeys the algorithm, assuming all
sites are initially up, because (i) each trans-
action reads an up copy; (ii) each transaction

114

writes all up copies of the data item it updates;
and (iii) since T 1 and T 2 operate on disjoint
copies, the execution is trivially two phase
locked. Nonetheless, the execution is incorrect,
because, in any serial execution of T 1 and T 2
against a one-copy database, one of the transao-
tions wculd have read the other's output.

This paper presents a theory for analyzing the
correctness of replicated data algorithms and
applies the theory to three algorithms: quorum
consensus [BL,Gi,Th], missing writes [ES], and
available copies [GSCDFR,HS].

Our techniques are designed to handle clean
site failures in which a site simply stops pro-
cessing operations. The available copies algorith~
makes the further assumption that site failures are
detectable. (The theory and other algorithms do
not need this assumption.) We take centralized dbs
recovery as a given: when a site recovers we
assume that it can undo or redo partially completed
transactions as necessary; see [BGH,Gr,Ve]. We do
not consider Byzantine failures [Do,LSP], network
failures, or network partitions.

Sections 2 and 3 present the theory. Sections
4-6 apply the theory to replicated data algorithms.

Section 7 is the conclusion.

2. SERIALIZABILITY THEORY FOR ONE-COPY DATABASES

The theory developed in this paper is an ex-
tension of serializability theory for database
concurrency control algorithms [BSW,Pa,SLE]. This
section reviews this theory. Section 3 generalizes
the theory for replicated databases.

2.1 Logs

Serializability theory models executions by
logs. A log identifies the reads and writes executed
on behalf of each transaction, and tells the order
in which those operations were executed.

A transaction log represents an allowable execu-
tion of a single transaction. Formally, it is a
partially ordered set (poset) T i = (~i,<i) where
Z i is the set of reads and writes issued by trans-
action i, and <i tells the order in which those
operations execute.

We draw logs as diagrams using arrows to
depict <. Given transaction logs

w0[x] rl[x]. \

T O = w0[Y] T 1 = ~Wl[X]

w0[z] rl[z]
/

T 2 = r 2[x] +w2[Y]

r4[x]

T 3 = r3[z/w3[y]~ T4 = r4[y]

~w3[z] r4[z]

the following is a log over {T0,TI,T2,T3,T4}.

L 1

_r I [x]~

w0[x]/ z ~Wl[X]) r4[x]

\rll
= Wo[Y]

Let L be a log over {T ,T }. Trans-
action T~ reads-x-from T i Yn L ~f (1) wi[x]
and rj [x~ are in L; (2) w i[x] <rj [x] ; and
(3) no Wk[X] falls between these operations.
Two logs are equivalent, denoted {, if they have
the same reads-from's; i.e. for all i,j, and x,
T< reads-x-from T i in one log iff this condition
holds in the other.

2.2 Serializable Logs

A serial log is a totally ordered log such
that for every pair of transactions T i and Tj,
either all of Ti's operations precede all of
Tj's, or vice versa. For example,

L 2 = w0[x]w0[Y]W0[z]r2[x]w2[Y]rl[x]rl[Z]Wl[X]r3[~_

w"w3[Y]W3[z]r4[x]r4[Y]r4[z]

A log is serializable (SR) if it is equivalent to a
Data items are represented by {xty,z,...}. serial log. E.g., log L 1 is SR because it is

ri[x] (resp. wi[x]) denotes a read (resp. write) equivalent to L 2.

on x by T i. TO avoid ambiguity, we assume no The serialization graph of log L, SG(L), is a
transaction writes a data item more than once. ~;e directed graph whose nodes represent transactions
also assume that if T i reads and writes x, then and whose arcs are {T i+TjlB oPi in T i and opj
ri[x] <i wi[x]" These assumptions do not li~it our in Tj such that oPi conflicts with opj and
results in any substantive way. °Pi <opj}

Let T ={T O ,T n} be a set of transaction
logs. A dbs log (or simply a log) over T repre-
sents an execution of T0,...,T n. Formally, a log
over T is a poset L = (~,<) where

(i) ~ = U n Z ; (2) < D U n <i; (3) every r.[x]
i=0 i -- i=0 3

follows at least one wi[x] (ri[x] follows wi[x]
if w: [x] <r4[x]); and (4) all pairs of con-

. + J .
fllctlng operatlons are < related (two operations
conflict if they operate on the salr.e data item, and
at least one is a write).

SG (L I) = T / ~ T 0. ~3 £4

THEOREM I. [BSW,EGLT,Pa] If SG(L) is acyclic
then L is SR.

All standard concurrency control algorithms
ensure that SG(L) is acyclic.

115

3. SERIALIZABILITY THEORY FOR REPLICATED
DATABASES

3.1 Replicated Data Logs

In a replicated database, each data item x
has one or more copies, Xa,Xb,..., at different
sites. We sometimes use the te~ns logical data
item and physical data items to emphasize the
distiLction between a data it6~ x and its copies

Xa,X b ,

Let T be a set of transaction logs. To
execute T in a replicated database, the dbs
applies a translation function, t. This function
maps each ri[x] into ri[x a] for some copy x a
of x, and each wi[x] into wi[Xal] wi[Xal]
for some copies Xal,...,XaZ of x.

A replicated dbs log (or rd log) over T is a
,n ~i), for some poset < = (~,<) where (i) ~ =t(bi= 0

translation function t; (2) For each Ti, and all
r

operations oPi and opl, if °Pi <i °Pi then
every operation in t(oPi) is < related to every
operation in t(op~); (3) Every r~[Xa] follows
at least one wi[x a] and (4) All ~airs of con-
flicting operations are < related (two operations
conflict if they operate on the same copy and at
least one is a write).

The following is an rd log over transactions

T0,...,T 4 of Section 2.

w0[x a] ~rl[Xa]r---~-Wl[X a] -~r4[x a]

w0 EXb1\ #l t
L 2 = w 0 [Yc] ~ r 2 [Xb]~W2 [Yc]

w0[Yd]/ ~ 7 ~2[Y~3[Yd]- "~r4[Yd]

w0[Ze]- r3[z e] ~] 'r4[Ze]

In the sequel, we use L to be an arbitrary rd

log over T = {T O Tn}.

Transaction Tj reads-x-from T i in L if for
some copy x a (i) w i[x a] and r~[x a] are opera-
tions in L; (2) w~ [x~] <r~[Xa]3; and (3) no
Wk[X a] falls between these operations. Log equi-
valence, serial log, serialization graph, and SR
log are defined exactly as for one-copy logs. In
addition, we extend the definition of log equiva-
lence. Two rd or one-copy logs over T are equi-
valent, denoted -, if they have the same reads-
from' s.

3.2 One-Copy Serializable Logs

An rd log is one-copy serializable (I-SR) if
it is equivalent to a serial one-copy log. One-copy
serializability is our correctness criterion for
managing replicated data.

An SR rd log (or even a serial rd log) need not
be I-SR; e.g.,

T O = w0[x] T 1 = rl[X]Wl[Y] T 2 = r2[Y]W2[X]

x has copies Xa, Xb; y has copies Yc' Yd

L 3 = w0[Xa]W0[Xb]rl[Xa]wl[Yc]r2[Yd]W2[X b]

In any serial one-copy log over {T0,TI,T2} , either
T 1 or T 2 must read from the other. But in L3,
both T 1 and T 2 read from T O . Thus L 3 is
not I-SR.

To tell if an rd log is I-SR, we use a modi-
fied serialization graph. We need some graph ter-
minology first. Given a graph G, << denotes its
precedence order: v i << vj if there is a path
from v i to vj in G. Let V' be a subset of
G's nodes. G embodies a total order over V' if

for each vi, vj 6V', either v i <<v. or v. <<v i-
We are mostly interested in acyclic ~raphs i~ which
case if G embodies a total order over V', the
total order is unique.

A one-copy serialization graph of log L,
1-SG(L), is SG(L) with enough edges added so
that: (i) For each logical data item x, I-SG(L)
embodies a total order over the transactions that
write x. This total order is called a write order
for x and is denoted <<x" (If <<x is not
unique, arbitrarily pick one.) (2) For each x
and transactions Ti, Tj, T k (i,j,k distinct) such
that Tj reads-x-from T i and Ti <<x Tk, I-SG(L)
contains a path from Tj to T k. This is called
a reads-before path; it signifies that Tj reads x
"logically before" T k writes x. In general, a
log will have many I-SG's.

One possible 1-SG for log L 3

T

I-SG (L 3) : T 0 ~ - ~

is

The edges T 0+T 1 and T 0+T 2 are in SG(L3) and
also embody <<x and <<y. The edge T 1 + T 2 is
a reads-before edge: it ls needed since T 1 reads-

x-from T O and TO <<x T2" T2 +TI is similar.

THEOREM 2. If L has an acyclic I-SG, then L is
1-SR.

Proof. Let L s be a serial one-copy log induced
by a topological sort of I-SG. We will show that
L s ~L, by showing they have the same reads-from's.
Let T. read-x-from T i in L, and let T k be any
other ~ransaction that writes x. If Tk <<x Ti,
then T k precedes T i in Ls. If T i <<xTk , then I-SG
has a reads-beofre path from Tj to T k and so T k
follows T i in L s. In neither case can T k come betwee]
T i and Tj, and so Tj reads-x-from T i in Ls, as desiredD

Theorem 2 is our main tool for proving repli-
cated data algorithms correct. We will characterize

each algorithm by the logs it produces. Then we
will show that every log produced by the algorithm
has an acyclic I-SG.

We conclude this section with a complexity
result.

3.3 l-SR is NP-Complete for Serial Logs

Papadimitriou et al. have shown that it is NP-
complete to decide if a one-copy log is SR [GJ,
prob. SR33, Pa]. That result uses a slightly
different notion of log equivalence than we use
here, but it is straightforward to adapt the result

116

to our model. The analogous problem for an rd log
is to decide if it is I-SR. This problem is
obviously NP-complete, because one-copy logs are a
special case of rd logs. We prove a stronger
result.

THEOREM 3- It is NP-complete to decide if a serial
rd log in 1-SR.

Proof (membership in NP). Let L be an rd log
over T. Guess a serial one-copy log L s over
T and verify L s {L.

(NP-hardness). The reduction is from the log
SR problem.

A log L has an acyclic reads-from if the
relation {T. <<T Ifor some x, T_ reads-x-from

1 3 " J
Ti} is acyclic. We can test this property in
polynomial time; and if L does not have an
acyclic reads-from, L is certainly not SE. So,
it remains NP-complete to test if a log with
acyclic reads-from is SR.

Let L' be a one-copy log with acyclic reads-
from. Transform L' into an rd log L by trans-
lating each wi[x] into wi[xi] and each rj[x]
into rj[x i] such that Tj reads-x-from T i in
L'. L and L' have the same reads-froms, hence
L' ~L, and L has an acyelic reads-from. Let L s
be a serial log induced by a topological sort of
the reads-from relation. L s ZL ~L', and so I

s
is I-SR iff L' is SR. D

4. QUORUM CONSENSUS ALGORITHM

4.1 How the Algorithm Works

For each data item x, define two collections
of sets of copies of x, read quorums and write
quorums, such that: (i) For each read quorum R
and write quorum W, R N W ~. (2) For each pair
of write quorums, W and W', W nW' /~. For
example, the read and write quorums could be all
sets containing a majority of copies.

The dbs processes write(x) by selecting a
write quorum W and executing writes on all
copies in W. To process read(x), the dbs uses
a new operation, called access. The dbs processes
read(x) by selecting a read quorum R, executing
access operations on all copies in R, and then
reading the most up-to-date copy accessed. (The
next paragraph explains how the dbs can tell
which copies are most up-to-date.) Access opera-
tions on a copy x a conflict with writes on Xa,
but don't conflict with reads. Access, read,
and write operations are synchronized by a
standard concurrency control algorithm.

Each copy has a version number, VN(Xa). Ver-
sion numbers are initially @. When the dbs pro-
cesses write(x) on quorum W, it calculates
VN = max{VN(xa) Ix a 6W}, and updates each version
number to 1 +VN. When the dbs processes read(x)
on quorum R, each access returns its copy's
version number, and the dbs reads the copy with
largest version number.

4.2 Analysis Using Serializability Theory

To analyze the algorithm, we must formalize
its behavior in terms of logs. A quorum consensus
(qc) log is an rd log L such that

(i) If T i writes x, then L contains
wi[Xal] wi[XaZ] for some write quorum
{Xal XaZ} of x;

(ii) If Tj reads x, then L contains

ajlXal]~rjr [Xak] , 1 (k

aj [Xa£]./
for some read quorum {Xal ,Xal} of x;

(iii) Every r~[x a] or aj[x a] follows at
leas one w i[x a] Ji /j) ; and

(iv) All pairs of conflicting operations are
< related, where writes on copy x a conflict
with writes, reads, and accesses on x a.

For example, consider a database with data
items x and y, with copies Xa' Xb' Xc' Yd' Ye'
and yf. Let the read and write quorums be all
majority sets. Consider transactions

T O = w0[x] T 1 = rl[x] wl[Y] T 2 = r2[Y] w2[x]

w0[Y]

A possible qc log over these transactions is

Wo[X a] +al[x a] +rl[x a] -~wl[Y d]

w0[xb] + a I [x b] ~ / ~ w I [ye]

L a =w0[Xc] ~ / / / ~

~ ~ i ~ ~ a![Ye] ÷r2[~Ye] +~w2[xb]

~ w 2 [x] w0 [Yf] c

The serialization graph of a qc log embodies
a write order, <<x, for each x, because all
write quorums intersect. Let T i write x, and
let VNx(T i) be Ti's index in <<x; VNx(Ti) is
the version number that T i assigns to each copy
of x that it writes. The version number
mechanism for reading is formalized by the
following:

VN-Rule: Let R x be the read quorum of

x that Tj accesses. Let last(Tj,x) =
{Tklfor some x a 6Rx, Wk[X a] is the last write
x a <aj[Xa]}. Tj reads-x-from T i such that
VNx(T i) is maxlmum over all T k 61ast(Tj,x).

THEOREM 4. Let L be a qc log that satisfies
the ~-rule. If SG(B) is acyclic, then 1 is
I-SR. Thus, quorum consensus is a correct repli-
cated data algorithm.

117

Proof. We prove that SG(L) is a I-SG. The result
then follows by Theorem 2. We have already seen
that SG(L) embodies a write order for each x.
It remains to prove that it contains all needed
reads-before paths: specifically, if Tj reads-x-
from T i and Ti <<x Tk' we prove that SG(L)
contains the edge Tj +T k-

By the VN-rule, VNx(T i) is maximum over

last(T¢,x), and, since Ti <<x Tk' VNx(Ti) <vNx(Tk)-
Thus, ~or all T h 61ast(Tj,x), T h <<x Tk" Since
SG(L) is acyclic, <<x is unique and is given by
SG's precedence order. Thus, for all T h 6
last(Tj,x), T h precedes T k in SG(L).

There exists a copy x a that Tj accesses
and T k writes, because every read and write
quorum intersect. Let T h be the last transaction
to write x a before Tj accesses it. By the
preceding paragraph, T k writes x a after T h
does. Thus L contains Wh[X a] < aj[x a] <Wk[Xa] ~
The conflict between aj and w k creates the eage

Tj ÷T k in SG(L), as desired. []

5. MISSING WRITE ALGORITHM

5.1 How the Algorithm Works

Transactions run in two modes, normal and
failure. If T i runs in normal mode, the dbs pro-
cesses write(x) by writing all copies of x and
read(x) by reading any copy. If T i runs in
failure mode, the dbs processes it using a quorum
consensus algorithm. Copies have version numbers.
Transactions (in both modes) update version numbers
as described in the previous section.

The choice of modes depends on whether T i is
"aware of missing writes." Informally, T i is aware
of a missing write on x if (i) T i writes x, but
does not write all copies of x; or (ii) the "last"
T k before T i in SG(L) that writes x does not
write all copies of x. (In case (ii), T i need not
read or write x itself.) We formalize this defi-
nition in the next subsection. If T i is aware of
a missing write, it must run in failure mode, else
it may run in either mode. For this rule to be
effective, the dbs must propagate missing write
information along SG edges. See [ES] for details.

Transaction T i may begin executing in normal
mode and become aware of missing updates as it runs.
When this happens, T i can abort and re-execute in
failure mode, or it can try to upgrade to failure
mode on the fly. (In [ES], upgrades are done on the

fly when T i commits.)

5.2 Analysis Using Seriallzability Thepr~

Transaction T i is maximal for Tj w.r.t, x
in log L, if T i writes x, and there is a path from
T i to Tj in SG(L) such that no T k (k ~i,j)
along the path also writes x. T. is aware of a
missing write if for some x, (i~ Tj writes x
but does not write all copies of x, or (ii) some
T i that is maximal for Tj w.r.t, x does not
write all copies of x. (In case (ii), Tj need not

operate on x.)

A missing write (mw) log is an rd log L such

that

(i) If T i writes x, then L contains
Wl[Xal] wi[XaZ] for some write quorum
{Xal Xa~} of x;

(ii.l) If T_. reads x and is aware of a
missing write, the3n L contains

aj [Xal] ~

• r. [Xak] , 1 ~<k~<£

a j [a,~]

f o r some r e a d q u o r u m { X a l Xa, ~} o f x. When
L contains this structure, Tj obeys the VN-rule
of Section 4.

(ii.2) If Tj reads x and is not aware of
any missing writes, L may contain the above
structure, or simply ri[x a] for some copy x a-

(iii) Every r~[x] or aj[x a] follows at

least one wi[x a]

(iv) All pairs of conflicting operations are
< related, where writes on copy x a conflict with
writes, reads, and accesses on x a.

Here is an example of an mw log. The data-
base has data items x and y, with copies Xa,
Xb, and Yc" The quorums for x (both read and
write) are {x a} and {Xa,Xb}. The quorum for y
is, of course, {yc }. The transactions are

T O = w0[x] T 1 = rl[x] T 2 = w2[x] T 3 = r3[x]

w0[Y] w2[Y] r3[Y]

A possible mw log is

L 5 =

w0[x a]

w0(5o]--~rl [x b]

w0[Y c]

w 2 [x a] ---~a 3 [Xa]---* r 3 [x a]

_..~ a3 [Xb]/

w 2 [Yc] --~ a 3 [Yc] ----~r 3 [Yc]

Note that T 1 runs in normal mode, but T 3 runs
in failure mode. T 3 must run in failure mode
because it is aware of T2's missing write.

The serialization graph of an mw log embodies
a write order for each x, because all write
quorums intersect. However, the graph need not
contain all necessary reads-before paths. For
example,

SG (L s) T0 "/TI ~3

T 1 reads-x-from T O , T 2 writes x, and T <<x T2,
and so a I-SG for L 5 must have reads-before path
from T 1 to T 2. We can extend SG(L 5) into an
acyclic I-SG by adding the edge T 1 +T 2. To prove
the algorithm correct, we show that this extension
works in general.

118

LEMMA I. Let L be an mw log. Let T i read x,
T k write x, and suppose they are not eonnected in
SG(L). Then Tj ran in normal mode (i.e., it
read one copy of x), and T k ran in failure mode
and did not write all copies of x.

Proof. If Tj accessed a quorum, it would con-
flict with every writer of x. If T k wrote all
copies, it would conflict with every reader of x.D

LEMMA 2. Let L be an mw log with SG(L) acyclia
Let T. read-x-from Ti, let T k write x (k#i,j),
and le~ Ti <<x Tk" Then T k does not precede
Tj in SG(L).

Proof. There are two cases.

i. T. read x using quorum consensus. The
3

VN-rule forces Tj to precede T k by an argument
similar to that in Theorem 4.

2. Tj read one copy of x. Then T i wrote
all copies of x, and for T k to precede Tj, T k
must precede T i. This contradicts the assumption

Ti <<x Tk" []

THEOREM 5. Let L be an mw log. If SG(L) is
acyclic, then L is I-SR. Thus, missing writes
is a correct replicated data algorithm.

Proof. Let G(L) =SG(L) U{T. ÷Tklfor some x and
Ti, Tj reads-x-from Ti, and3 Ti <<x Tk}; i.e. G(L)
is SG(L) augmented with all reads-before edges.
G(L) is clearly a l-SG. We prove that it is
acyclic. The result then follows by Theorem 2.

We need two facts about directed graphs.

Fact I. A cycle v 0+v l÷--- ÷v n÷v 0 in a graph
~s ~o~inimal if the graph contains an edge, called
a chord, v i÷vi+ k for 1 ~i~n, k~2. That is, a
nonminimal cycle can be shortened by substituting
the chord v i+vi+ k for the path. . v.z ÷v'z+l+''" ÷
V. ~ All other cycles are mzntmal. Every cyclic
l+

grap~ has a minimal cycle.

Fact 2. Let vj and v k be nodes of an acyclic
g-~aph such that v k does not precede vj. Adding
the edge vj ÷v k cannot create a cycle.

The main proof now begins.

Suppose G(L) is cyclic. By Fact l, G(L)
contains a minimal cycle C. By Fact 2 and Len~a 2,
any cycle in G(L) must contain two edges not in
SG(L); call those new edges. Let us write C in
the form below, wh~re Tj +T k is a new edge, and
T~ +T m is the next new edge along the cycle.

new ~ Tk+ new p T ~ --. ÷T C = Tj --- +T~ n j

By Lemma i, T k runs in failure mode and has a
missing write, say, on x. Since C is minimal, no
T.. between T~. and T£ writes x, else G(L)

would have the chord T k ÷Tki. The path from T k
to T Z has no new edges, hence is in SG(L). No
Tki along this path writes x, hence T k is maxi-
mal for TZ w.r.t, x. Therefore TZ is aware of
Tk'S missing write and runs in failure mode, too.
But this contradicts Lemma 1 which claims that Ti

runs in normal mode because of the new edge
TZ +T m. This contradiction proves that cycle C
cannot exist, and G(L) is acyclic as desired. D

6. AVAILABLE COPIES ALGORITHM

6.1 How the Algorithm Works

The available copies algorithm is an
embellished form of the incorrect, simple algo-
rithm given in the Introduction. The idea is to
ynchronize failures and recoveries with trans-

actions, by controlling when a copy is deemed
"available" for use.

When a site recovers from failure, the dbs
runs a special INCLUDE transaction for each data
item copy stored at the site. INCLUDE(Xa) , or
simply IN(Xa) , brings the value of x a up-to-
date and declares x a available. When a site
fails, the dbs runs an EXCLUDE transaction for
each copy stored there. EXCLUDE(Xa), or EX(Xa),
declares x a unavailable.

we make a notational assumption that simplifies
the discussion: when a site recovers, we treat its
data as new copies that are joining the system for
the first time. Thus, each copy has a well-defined
lifetime. It is born--i.e., joins the system--at
some point. Then it becomes available through the
action of an INCLUDE transaction. Later it dies--
i.e. fails--and becomes unavailable through an
EXCLUDE transaction. Once a copy is EXCLUDEd, it
remains unavailable forever.

The dbs processes read(x) by reading any
available copy of x. The dbs process write(x)
by writing all available copies. The dbs syn-
chronizes transactions with IN's and EX's to
achieve four properties.

i. A transaction can read or write x a only
when it is available.

2. Suppose T i reads x a and Xa'S site
subsequently fails. Then T i must "logically
precede" EX(Xa).

3. If T i writes x, condition (2) must hold
for at least one copy T i writes.

4. If T i writes x and Xa'S site fails
before T i is able to write x a, then EX(x a)
logically precedes T i. On the other hand, if a
new copy x b is INCLUDE'd while T i is running
and T i does not write Xb, then T i logically
precedes IN(Xb).

Let us apply these properties to the example

used in the Introduction. Log L 6 reproduces that
example in log notation.

w0[x a] ,, Prl[Xa]~ ~wl[Y c]

5 6 = w0 [Xb] ~ / /

1 1 9

The diagram below indicates the logical precedence
order required by the algorithm. The edge labels
tell why each edge is present in the diagr~n: "1-4"
means that the edge is needed to satisfy the
corresponding property; "SG" stands for "seriali-
zation graph" and means that the edge represents
the order of conflicting operations.

//~2 ~ ~\
IN(Xa)~ 1 ~ T1 ~ EX(Xa)~

~T 0 \ /
l/

IN(Yc)/L/ SG 3 EX(y c)

This diagram has a cycle: TI~EX(x a) +T2~EX(y d) ~
T I. An available copies algorithm prevents bad
logs like L 6 by ensuring that the "logical pre-

cedes" relation has no cycles.

6.2 Serializability Theory for Available Copies

This section develops the serializability
theory needed to analyze the available copies algo-

rithm. As in Section 3, we focus on the reads and
writes executed by the dbs on behalf of user trans-
actions, T O , T I, We treat IN and EX
quite abstractly, specifying their behavior with a
few properties that relate them to user trans-

actions.

The theory addresses two main problems. One is
to model the way INCLUDE's bring copies up-to-date.
The other is to model the way IN's and EX's are
synchronized with user transaction{.

Modelling INCLUDE's

For each x, we designate one copy to be its
initial copy. The initial copy is the first one
to join the system. When this copy is INCLUDE'd,
there is no need to bring it "up-to-date," because
there is no value of x yet. The first user
transaction to operate on the copy must create
its initial value by writing it. This trans--
action must run before any other copies of x can

be INCLUDED.

A subsequent INCLUDE, say IN(Xa) , must
bring x a up-to-date. It doer this by
(i) reading the value of x produced by some

transaction Ti, and (ii) writing that value
into x a. (Later, we explain how to make sure
the value read is up-to-date.) IN(x a) can
read-from T i by reading a copy of x that
T i wrote. [ABG], or by reading the value of
from a special place called a spooler [HS].

Suppose Tj reads-x-from IN(Xa). The value

read by T i is precisely the value written by T i,
and we say that Tj indirectly reads-x-from T i-
All other reads-froms are d~rect, we extend our
notion of log equivalence. Two logs over the same
user transactions are equivalent if they have the
same direct and indirect reads-from's. Finally, we
extend the definition of I--SG to required that if

T. indirectly reads-from Ti, there is a path from
T~ to Tj. It is easy to verify that Theorem 2
remains valid under these extensions.

Suppose T k writes x a. We require that this
write occurs after the write done by IN(Xa).
Therefore, if Tj reads-x-from IN(x a) and T k

writes Xa, then rj[x a] <Wk[Xa].

Available Copies Serialization Graphs

Let L be an rd log over user transactions
T O T . An available copies serialization
graph (A~SG) for L is a directed graph whose
nodes represent T0,...,Tn, and IN(Xa), EX(x a)
for each copy x a referenced in L. The edges

among user transactions are:

SG Edges. T i+T. if for some x a, r. [x a] <

wj[Xa] , or wi[Xa] <r~[Xa], or wi[x a] <wj~Xa];

RF Edges. T i +Tj if for some x, Tj

indirectly reads-x-from T i .

The edges relating user transactions to IN's

and EX's are:

ACI. IN(x a) + T i if T i reads or writes Xa;

A£2. T i ÷EX(Xa) if T i reads Xa;

AC__~%. T i÷Ex(x a) if T i writes x, for at least one
copy x a that T i writes.

AC4. EX(x b) +T i or T i+IN(x b) if T i writes x,
but does not write copy x b.

To ensure that INCLUDE's read up-to-date values,
we place one more constraint on ACSG's. Let <<
be the precedence order of an ACSG. Transaction
T i is up-to-date for IN(x a) if T i writes x,

T i << IN(Xa), and no Tk, T i <<T k << IN(x a) also
writes x. We require that if IN(x a) reads-from
Ti, then T i is up-to-date for IN(Xa).

We now prove that if L has an acyclic ACSG,

then L is I-SR.

LEMMA 3. An ACSG for L embodies a write order
for each data item x.

Proof. Let T i and T k write x. If they write
the same copy, they are connected by an SG edge.
So, assume they write disjoint sets of copies. Let
x a be a copy T i writes in observance of AC3. By

AC4, T k +IN(x a) or EX(x a) ÷Tk; by ACI,
IN(x@) +Ti; by AC3, T i+EX(xa). Multiplying these

condltions together, we get T k + IN (x a) +T i or
T i+EX(xa) ÷T k. In both cases, T i and T k are
related. D

Consider an ACSG for L, and let << be its
precedence order. The ACSG embodies a reads-before
order for x, if for all distinct Ti, Tj, and T k,
if Tj reads-x-from T i, T k writes x, and T i <<T k

then Tj << T k-

LEMMA 4. An acyclic ACSG for L embodies a reads-
before order for each data item x.

Proof. Let Tj read-x-from Ti, let T k also write
x, and let T i << T k. Let x a be the copy Tj reads

120

There are four cases.

Case I. T i and T k write x a. Since T i <<T k
a--~-d-ACSG is acyclic, w. [x_] <W,o[X]. By definition 1 ~ ~ a
of reads-from, this implies r~. [x=] <w,.[x~], whlch
introduces the SG edge Tj ÷T k.

Case 2. T i writes x , but TI. does not. By AC4,
Tk----~I~(x) or EX(xa)a+Tk ; by ~CI, IN(x a) +Ti; by
AC2, T. +aEx(x_). Multiplying these conditions, we
get T3÷IN(Xa) +T i or Tj ÷EX(x a) +T k. The first
term is impossible, since T i << T k and ACSG is
acyclic. We are left with the second term which
implies Tj <<T k as desired.

Case 3. T i does not write Xa, but T k does. In
this case, Tj's reads-from is indirect, and
rj[x a] <Wk[X a] by the observation made earlier in
the section. As in Case i, this gives Tj +T k-

Case 4. Neither T i nor T k writes x a. Again,
Tj's reads-from is indirect, and IN(x a) reads-

from T i. By AC4, Tk+IN(x a) or EX(x a) +T k.
Since T i <<Tk, the first term implies that T i is
not up-to-date for IN(x a), contradicting the
definition of ACSG. As in Case 2, the second term
plus AC2 gives Tj ÷EX(Xa) ÷T k. []

THEOREM 6. If L has an acyclic ACSG, then L is
I-SR. Thus, available copies is a correct replicated
data algorit~n.

Proof. Let << be the ACSG's precedence order. By
Lemmas 3 and 4, the restriction of << to user
transactions is an acyclic I-SG. The result follows
by Theorem 2. []

7. CONCLUSION.

We have extended serializability theory to
account for failures and recoveries in replicated
databases. The main idea is one-copy serializabi-
lity: an execution of transactions in a replicated
database is one-copy serializable (I-SR) if it is
equivalent to a serial execution of the same trans-
actions in a non-replicated (one-copy) database. A
replicated data algorithm is correct if all of its
execution are 1-SR. We gave a graph structure,
one-copy serialization graphs (1-SG's), for testing
if an execution is I-SR. I-SG's are analogous to
the serialization graphs used in conventional
serializability theory.

We applied the theory to three algorithms:
quorum consensus, missing writes, and available
copies. In the simplest form of quoru/r~ consensus,
a transaction writes logical data item x by
writing a majority of its copies; a transaction
reads x by accessing a majority of copies and
reading the most up-to-date one. In missing writes,
a transaction runs in either of two modes. If the
transaction is "aware" of missing writes, it uses a
quorum consensus algorithm; else, to write x, it
writes all copies of x, and to read x, it reads
any copy. In available copies, a transaction writes
x by writing all "available" copies of x; and
reads x by reading any "available" copy. Copies
become available and unavailable in a synchronized
manner through special INCLUDE and EXCLUDE trans-
actions.

Our analysis concentrates on the ordering of
events imposed by each algorithm. We pay no
attention to the mechanisms used to implement these
orderings. As a result, our treatment is quite
abstract and ignores many algorithmic issues. The
gap between analysis and algorithm is modest for
the first algorithm we treat (quorum consensus),
but widens as the paper proceeds. We regard
bridging this gap to be an important area for
future research.

REFERENCES

[ABDG] Alsberg, P.A., G.G. Belford, J.D. Day, and
E. Grapa, "Multi-copy Resiliency Techniques,"
Distributed Data Management (J.B. Rothnie,
P.A. Bernstein, D.W. Shipman, eds.), IEEE,
1978, pp. 128-176.

[ABG] Attar, R., P.A. Bernstein, and N. Goodman,
"Site Initialization, Recovery, and Back-up
in a Distributed Database System," Proc. 6th
Berkeley Workshop, Feb. 1982, pp. 185-202.

[BG] Bernstein, P.A., and N. Goodman, "Concurrency
Control in Distributed Database Systems," ACM
Computing Surveys 13, 2 (June 1981), pp. 185-
221.

[BGH] Bernstein, P.A., N. Goodman, and V.
Hadzillacos, "Recovery Algorithms for Data-
base Systems," Proc. 9th IFIPS Congress,
Sept. 1983.

[BL] Breitwieser, H., and M. Leszak, "A Distributed
Transaction Processing Protocol Based on
Majority Consensus," Proc. 1st ACM SIGACT-
SIGOPS Symp. on Principles of Distributed
Computing, Aug. 1982, pp. 224--237.

[BSW] Bernstein~ P.A., D.W. Shipman, and W.8. Wong,
"Formal Aspects of Serializability in Database
Concurrency Control," IEEE Trans. on Software
Engineering, SE-5, 3 (may 1979), pp. 203-215.

[Do] Dolev, D., "The Byzantine Generals Strike
Again," J. of Algorithms, 3, 1 (1982).

[EGLT] Eswaran, K.P., J.N. Gray, R.A. Lorie, and
I.L. Traiger, "The Notions of Consistency and
Predicate Locks in a Database System," Cormnun.
ACM, 19, ii, Nov. 1976, pp. 624-633.

[Gi] Gifford, D.K., "Weighted Voting for Replicated
Data," Proc. 7th ACM-SIGOPS Symp. on Operating
Systems Principles, Dec. 1979, pp. 150-159.

[Gr] Gray, J.N., "Notes on Database Operating
Systems," in Operating Systems: An Advanced
Course, springer-Verlag, 1979.

[GJ] Garey, M.J., and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., SF, 1979.

[GSCDFR] Goodman, N., D. Skeen, A. Chan, U. Dayal,
S. Fox, and D. Ries, "A Recovery Algorithm for
a Distributed Database System," Proc. 2nd ACM
SIGACT-SIGMOD Syrup. on Principles of Database
Systems, March 1983.

[HS] Hammer, M.M., and D.W. Shipman, "Reliability
Mechanisms for SDD-I: A System for Distributed
Databases," ACM Trans. on Database Syst., 5, 5
(Dec. 1980), pp. 431-446.

121

[Pa] Papadimitriou, C.H., "Serializability of Con-
current Updates," JACM, 26, 4 (October 1979),
631-653.

[PSL] Pease, M., R. Shostak, and L. Lamport,
"Reaching Agreement in the Presence of Faults,"
JACM, 27, 2 (1980), pp. 228-234.

[SLR] Stearns, R.E., Lewis, P.M., II, and Rosen-
krantz, D.J., "Concurrency Controls for Data-
base Systems," Proc. of the 17th Annual Symp.
on Foundations of Computer Science, IEEE,
1976, pp. 19-32.

[Th] Thomas, R.H., "A Majority Consensus ~?proach
to Concurrency Control for Multiple Copy Data-
bases," ACM Trans. on Database Systems, 4, 2
(June 1979), 180-209.

[TGGL] Traiger, I.L., J. Gray, C.A. Galtier, and
B.G. Lindsay, "Transactions and Consistency
in Distributed Database Systems," ACM Trans.
on Database Systems, 7, 3, (Sept. 1982), pp.
323-342.

[Ve] Verhofstad, J.M.S., "Recovery Techniques for
Database Systems," ACM Computing Surveys, i0,
2 (1978), pp. 167-196.

122

