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ABSTRACT 

A replicated database is a distributed data- 
base in which some data items are stored redundantly 
at multiple sites. The main goal is to improve 
system reliability. By storing critical data at 
multiple sites, the system can operate even though 
some sites have failed. However, few distributed 
database systems support replicated data, because 
it is difficult to manage as sites fail and recover. 

A replicated data algorithm has two |)arts. 
One is a discipline for reading and writing data 
item copies. The other is a concurrency control 
algorithm for synchronizing those operations. The 
read-write discipline ensures that if one trans- 
action writes logical data item x, and another 
transaction reads or writes x, there is some 
physical manifestation of that logical conflict. 
The concurrency control algorithm synchronizes 
physical conflicts; it knows nothing about logical 
conflicts. In a correct replicated data algorithm, 
the physical manifestation of conflicts rnust be 
strong enough so that synchronizing physical 
conflicts is sufficient for correctness. 

This paper presents a theory for proving the 
correctness of algorithms that manage replicated 
data. The theory is an extension of serializabi-- 
lity theory. We apply it to three replicated 
data algorithms: Gifford's "quorum consensus" 
algorithm,Eager and Sevcik's "missing writes" 
algorithm, and Computer Corporation of Ar~,erica's 
~'available copies" algorithm. 
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I • I i;TRODUCT I OiL 

In a one-copy distributed database, each data 
item is stored at exactly one site of a distributed 
system. In a replicated database, some data items 
may be stored at multiple sites. In a replicated 
database, when a user updates data item x, the 
distributed database system (dbs) must apply the 
update to one or more copies of x. When a user 
reads x, the dbs must select an up-to-date copy 
of x to be read. The main motivation for repli- 
cated data is improved reliability [ABDG,HS]: by 
storing important data at multiple sites, the dbs 
can tolerate failures more gracefully. 

The main correctness criteria for replicated 
databases are: replica control--the multiple 
copies of a data item must behave like a single 
copy insofar as users can tell; and concurrency 
oontro~--the effect of a concurrent execution must 
be equivalent to a serial one. A replicated dbs 
that achieves replica control and concurrency 
control has the same input/output behavior as a 
centralized, one-copy dbs that executes user 
requests one at a tirae [TGGL]. 

The simplest way to handle replicated data is 
the following. When a user updates x, the dbs 
applies the update to all copies of x stored at 
"up" sites. %~en a user wishes to read x, the 
dbs reads any copy of x at an "up" site. Con- 
currency control is by distributed two phase 
locking [BG,EGLT]. 

Unfortunately, this simple algorithm is in- 
correct. Consider a database with data items x 

and y and copies Xa, Xb, Yc, Yd- Transaction 
T 1 reads x and writes y; T 2 reads y and 
writes x. The following execution obeys the 
simple algorithm, yet is incorrect. 

rl[x a] d-fails wl[Y c] 

r2[Y d] a-fails w2[x b] 

'rl[Xa]' denotes a read of 
denotes the failure of site 

x a by TI; 'd-fails' 
d; and so forth. Time 

moves from left-to-right. T 1 and T 2 do their 
reads at approximately the same time; then sites 
and d fail; then T 1 and T 2 do their writes. 
This execution obeys the algorithm, assuming all 
sites are initially up, because (i) each trans- 
action reads an up copy; (ii) each transaction 
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writes all up copies of the data item it updates; 
and (iii) since T 1 and T 2 operate on disjoint 
copies, the execution is trivially two phase 
locked. Nonetheless, the execution is incorrect, 
because, in any serial execution of T 1 and T 2 
against a one-copy database, one of the transao- 
tions wculd have read the other's output. 

This paper presents a theory for analyzing the 
correctness of replicated data algorithms and 
applies the theory to three algorithms: quorum 
consensus [BL,Gi,Th], missing writes [ES], and 
available copies [GSCDFR,HS]. 

Our techniques are designed to handle clean 
site failures in which a site simply stops pro- 
cessing operations. The available copies algorith~ 
makes the further assumption that site failures are 
detectable. (The theory and other algorithms do 
not need this assumption.) We take centralized dbs 
recovery as a given: when a site recovers we 
assume that it can undo or redo partially completed 
transactions as necessary; see [BGH,Gr,Ve]. We do 
not consider Byzantine failures [Do,LSP], network 
failures, or network partitions. 

Sections 2 and 3 present the theory. Sections 
4-6 apply the theory to replicated data algorithms. 

Section 7 is the conclusion. 

2. SERIALIZABILITY THEORY FOR ONE-COPY DATABASES 

The theory developed in this paper is an ex- 
tension of serializability theory for database 
concurrency control algorithms [BSW,Pa,SLE]. This 
section reviews this theory. Section 3 generalizes 
the theory for replicated databases. 

2.1 Logs 

Serializability theory models executions by 
logs. A log identifies the reads and writes executed 
on behalf of each transaction, and tells the order 
in which those operations were executed. 

A transaction log represents an allowable execu- 
tion of a single transaction. Formally, it is a 
partially ordered set (poset) T i = (~i,<i) where 
Z i is the set of reads and writes issued by trans- 
action i, and <i tells the order in which those 
operations execute. 

We draw logs as diagrams using arrows to 
depict <. Given transaction logs 

w0[x] rl[x]. \ 

T O = w0[Y] T 1 = ~Wl[X] 

w0[z] rl[z] 
/ 

T 2 = r 2[x] +w2[Y] 

r4[x] 

T 3 = r3[z/w3[y]~ T4 = r4[y] 

~w3[z] r4[z] 

the following is a log over {T0,TI,T2,T3,T4}. 

L 1 

_r I [x]~ 

w0[x]/ z ~Wl[X] ) r4[x] 

\rll 
= Wo[Y] 

Let L be a log over {T ..... ,T }. Trans- 
action T~ reads-x-from T i Yn L ~f (1) wi[x] 
and rj [x~ are in L; (2) w i[x] <rj [x] ; and 
(3) no Wk[X ] falls between these operations. 
Two logs are equivalent, denoted {, if they have 
the same reads-from's; i.e. for all i,j, and x, 
T< reads-x-from T i in one log iff this condition 
holds in the other. 

2.2 Serializable Logs 

A serial log is a totally ordered log such 
that for every pair of transactions T i and Tj, 
either all of Ti's operations precede all of 
Tj's, or vice versa. For example, 

L 2 = w0[x]w0[Y]W0[z]r2[x]w2[Y]rl[x]rl[Z]Wl[X]r3[~_ 

w"w3[Y]W3[z]r4[x]r4[Y]r4[z] 

A log is serializable (SR) if it is equivalent to a 
Data items are represented by {xty,z,...}. serial log. E.g., log L 1 is SR because it is 

ri[x] (resp. wi[x]) denotes a read (resp. write) equivalent to L 2. 

on x by T i. TO avoid ambiguity, we assume no The serialization graph of log L, SG(L), is a 
transaction writes a data item more than once. ~;e directed graph whose nodes represent transactions 
also assume that if T i reads and writes x, then and whose arcs are {T i+TjlB oPi in T i and opj 
ri[x] <i wi[x]" These assumptions do not li~it our in Tj such that oPi conflicts with opj and 
results in any substantive way. °Pi <opj} 

Let T ={T O .... ,T n} be a set of transaction 
logs. A dbs log (or simply a log) over T repre- 
sents an execution of T0,...,T n. Formally, a log 
over T is a poset L = (~,<) where 

(i) ~ = U n Z ; (2) < D U n <i; (3) every r.[x] 
i=0 i -- i=0 3 

follows at least one wi[x] (ri[x] follows wi[x] 
if w: [x] <r4[x]); and (4) all pairs of con- 

. + J . 
fllctlng operatlons are < related (two operations 
conflict if they operate on the salr.e data item, and 
at least one is a write). 

SG (L I) = T / ~ T  0. ~3 £4 

THEOREM I. [BSW,EGLT,Pa] If SG(L) is acyclic 
then L is SR. 

All standard concurrency control algorithms 
ensure that SG(L) is acyclic. 
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3. SERIALIZABILITY THEORY FOR REPLICATED 
DATABASES 

3.1 Replicated Data Logs 

In a replicated database, each data item x 
has one or more copies, Xa,Xb,..., at different 
sites. We sometimes use the te~ns logical data 
item and physical data items to emphasize the 
distiLction between a data it6~ x and its copies 

Xa,X b , .... 

Let T be a set of transaction logs. To 
execute T in a replicated database, the dbs 
applies a translation function, t. This function 
maps each ri[x] into ri[x a] for some copy x a 
of x, and each wi[x] into wi[Xal] ..... wi[Xal] 
for some copies Xal,...,XaZ of x. 

A replicated dbs log (or rd log) over T is a 
,n ~i ), for some poset < = (~,<) where (i) ~ =t(bi= 0 

translation function t; (2) For each Ti, and all 
r 

operations oPi and opl, if °Pi <i °Pi then 
every operation in t(oPi) is < related to every 
operation in t(op~); (3) Every r~[Xa] follows 
at least one wi[x a] and (4) All ~airs of con- 
flicting operations are < related (two operations 
conflict if they operate on the same copy and at 
least one is a write). 

The following is an rd log over transactions 

T0,...,T 4 of Section 2. 

w0[x a] ~rl[Xa]r---~-Wl[X a] -~r4[x a] 

w0 EXb1\ #l t 
L 2 = w 0 [Yc ] ~ r  2 [Xb]~W2 [Yc ] 

w0[Yd]/ ~ 7 ~2[Y~3[Yd]- "~r4[Yd ] 

w0[Ze]- r3[z e] ~ ]  'r4[Ze] 

In the sequel, we use L to be an arbitrary rd 

log over T = {T O ..... Tn}. 

Transaction Tj reads-x-from T i in L if for 
some copy x a (i) w i[x a] and r~[x a] are opera- 
tions in L; (2) w~ [x~] <r~[Xa]3; and (3) no 
Wk[X a] falls between these operations. Log equi- 
valence, serial log, serialization graph, and SR 
log are defined exactly as for one-copy logs. In 
addition, we extend the definition of log equiva- 
lence. Two rd or one-copy logs over T are equi- 
valent, denoted -, if they have the same reads- 
from' s. 

3.2 One-Copy Serializable Logs 

An rd log is one-copy serializable (I-SR) if 
it is equivalent to a serial one-copy log. One-copy 
serializability is our correctness criterion for 
managing replicated data. 

An SR rd log (or even a serial rd log) need not 
be I-SR; e.g., 

T O = w0[x] T 1 = rl[X]Wl[Y] T 2 = r2[Y]W2[X] 

x has copies Xa, Xb; y has copies Yc' Yd 

L 3 = w0[Xa]W0[Xb]rl[Xa]wl[Yc]r2[Yd]W2[X b] 

In any serial one-copy log over {T0,TI,T2} , either 
T 1 or T 2 must read from the other. But in L3, 
both T 1 and T 2 read from T O . Thus L 3 is 
not I-SR. 

To tell if an rd log is I-SR, we use a modi- 
fied serialization graph. We need some graph ter- 
minology first. Given a graph G, << denotes its 
precedence order: v i << vj if there is a path 
from v i to vj in G. Let V' be a subset of 
G's nodes. G embodies a total order over V' if 

for each vi, vj 6V', either v i <<v. or v. <<v i- 
We are mostly interested in acyclic ~raphs i~ which 
case if G embodies a total order over V', the 
total order is unique. 

A one-copy serialization graph of log L, 
1-SG(L), is SG(L) with enough edges added so 
that: (i) For each logical data item x, I-SG(L) 
embodies a total order over the transactions that 
write x. This total order is called a write order 
for x and is denoted <<x" (If <<x is not 
unique, arbitrarily pick one.) (2) For each x 
and transactions Ti, Tj, T k (i,j,k distinct) such 
that Tj reads-x-from T i and Ti <<x Tk, I-SG(L) 
contains a path from Tj to T k. This is called 
a reads-before path; it signifies that Tj reads x 
"logically before" T k writes x. In general, a 
log will have many I-SG's. 

One possible 1-SG for log L 3 

T 

I-SG (L 3) : T 0 ~ -  ~ 

is 

The edges T 0+T 1 and T 0+T 2 are in SG(L3 ) and 
also embody <<x and <<y. The edge T 1 + T 2 is 
a reads-before edge: it ls needed since T 1 reads- 

x-from T O and TO <<x T2" T2 +TI is similar. 

THEOREM 2. If L has an acyclic I-SG, then L is 
1-SR. 

Proof. Let L s be a serial one-copy log induced 
by a topological sort of I-SG. We will show that 
L s ~L, by showing they have the same reads-from's. 
Let T. read-x-from T i in L, and let T k be any 
other ~ransaction that writes x. If Tk <<x Ti, 
then T k precedes T i in Ls. If T i <<xTk , then I-SG 
has a reads-beofre path from Tj to T k and so T k 
follows T i in L s. In neither case can T k come betwee] 
T i and Tj, and so Tj reads-x-from T i in Ls, as desiredD 

Theorem 2 is our main tool for proving repli- 
cated data algorithms correct. We will characterize 

each algorithm by the logs it produces. Then we 
will show that every log produced by the algorithm 
has an acyclic I-SG. 

We conclude this section with a complexity 
result. 

3.3 l-SR is NP-Complete for Serial Logs 

Papadimitriou et al. have shown that it is NP- 
complete to decide if a one-copy log is SR [GJ, 
prob. SR33, Pa]. That result uses a slightly 
different notion of log equivalence than we use 
here, but it is straightforward to adapt the result 
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to our model. The analogous problem for an rd log 
is to decide if it is I-SR. This problem is 
obviously NP-complete, because one-copy logs are a 
special case of rd logs. We prove a stronger 
result. 

THEOREM 3- It is NP-complete to decide if a serial 
rd log in 1-SR. 

Proof (membership in NP). Let L be an rd log 
over T. Guess a serial one-copy log L s over 
T and verify L s {L. 

(NP-hardness). The reduction is from the log 
SR problem. 

A log L has an acyclic reads-from if the 
relation {T. <<T Ifor some x, T_ reads-x-from 

1 3 " J 
Ti} is acyclic. We can test this property in 
polynomial time; and if L does not have an 
acyclic reads-from, L is certainly not SE. So, 
it remains NP-complete to test if a log with 
acyclic reads-from is SR. 

Let L' be a one-copy log with acyclic reads- 
from. Transform L' into an rd log L by trans- 
lating each wi[x] into wi[xi] and each rj[x] 
into rj[x i] such that Tj reads-x-from T i in 
L'. L and L' have the same reads-froms, hence 
L' ~L, and L has an acyelic reads-from. Let L s 
be a serial log induced by a topological sort of 
the reads-from relation. L s ZL ~L', and so I 

s 
is I-SR iff L' is SR. D 

4. QUORUM CONSENSUS ALGORITHM 

4.1 How the Algorithm Works 

For each data item x, define two collections 
of sets of copies of x, read quorums and write 
quorums, such that: (i) For each read quorum R 
and write quorum W, R N W ~. (2) For each pair 
of write quorums, W and W', W nW' /~. For 
example, the read and write quorums could be all 
sets containing a majority of copies. 

The dbs processes write(x) by selecting a 
write quorum W and executing writes on all 
copies in W. To process read(x), the dbs uses 
a new operation, called access. The dbs processes 
read(x) by selecting a read quorum R, executing 
access operations on all copies in R, and then 
reading the most up-to-date copy accessed. (The 
next paragraph explains how the dbs can tell 
which copies are most up-to-date.) Access opera- 
tions on a copy x a conflict with writes on Xa, 
but don't conflict with reads. Access, read, 
and write operations are synchronized by a 
standard concurrency control algorithm. 

Each copy has a version number, VN(Xa). Ver- 
sion numbers are initially @. When the dbs pro- 
cesses write(x) on quorum W, it calculates 
VN = max{VN(xa) Ix a 6W}, and updates each version 
number to 1 +VN. When the dbs processes read(x) 
on quorum R, each access returns its copy's 
version number, and the dbs reads the copy with 
largest version number. 

4.2 Analysis Using Serializability Theory 

To analyze the algorithm, we must formalize 
its behavior in terms of logs. A quorum consensus 
(qc) log is an rd log L such that 

(i) If T i writes x, then L contains 
wi[Xal] ..... wi[XaZ] for some write quorum 
{Xal .... XaZ} of x; 

(ii) If Tj reads x, then L contains 

ajlXal]~rjr [Xak] , 1 (k 

aj [ Xa£]./ 
for some read quorum {Xal .... ,Xal} of x; 

(iii) Every r~[x a] or aj[x a] follows at 
leas one w i[x a] Ji /j) ; and 

(iv) All pairs of conflicting operations are 
< related, where writes on copy x a conflict 
with writes, reads, and accesses on x a. 

For example, consider a database with data 
items x and y, with copies Xa' Xb' Xc' Yd' Ye' 
and yf. Let the read and write quorums be all 
majority sets. Consider transactions 

T O = w0[x] T 1 = rl[x] wl[Y] T 2 = r2[Y] w2[x] 

w0[Y] 

A possible qc log over these transactions is 

Wo[X a] +al[x a] +rl[x a] -~wl[Y d] 

w0[xb] + a I [x b ] ~ / ~ w  I [ye ] 

L a =w0[Xc] ~ / / / ~  

~ ~ i ~ ~  a![Ye] ÷r2[~Ye] +~w2[xb ] 

~ w 2 [x ] w0 [Yf] c 

The serialization graph of a qc log embodies 
a write order, <<x, for each x, because all 
write quorums intersect. Let T i write x, and 
let VNx(T i) be Ti's index in <<x; VNx(Ti) is 
the version number that T i assigns to each copy 
of x that it writes. The version number 
mechanism for reading is formalized by the 
following: 

VN-Rule: Let R x be the read quorum of 

x that Tj accesses. Let last(Tj,x) = 
{Tklfor some x a 6Rx, Wk[X a] is the last write 
x a <aj[Xa]}. Tj reads-x-from T i such that 
VNx(T i) is maxlmum over all T k 61ast(Tj,x). 

THEOREM 4. Let L be a qc log that satisfies 
the ~-rule. If SG(B) is acyclic, then 1 is 
I-SR. Thus, quorum consensus is a correct repli- 
cated data algorithm. 
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Proof. We prove that SG(L) is a I-SG. The result 
then follows by Theorem 2. We have already seen 
that SG(L) embodies a write order for each x. 
It remains to prove that it contains all needed 
reads-before paths: specifically, if Tj reads-x- 
from T i and Ti <<x Tk' we prove that SG(L) 
contains the edge Tj +T k- 

By the VN-rule, VNx(T i) is maximum over 

last(T¢,x), and, since Ti <<x Tk' VNx(Ti) <vNx(Tk)- 
Thus, ~or all T h 61ast(Tj,x), T h <<x Tk" Since 
SG(L) is acyclic, <<x is unique and is given by 
SG's precedence order. Thus, for all T h 6 
last(Tj,x), T h precedes T k in SG(L). 

There exists a copy x a that Tj accesses 
and T k writes, because every read and write 
quorum intersect. Let T h be the last transaction 
to write x a before Tj accesses it. By the 
preceding paragraph, T k writes x a after T h 
does. Thus L contains Wh[X a] < aj[x a] <Wk[Xa] ~ 
The conflict between aj and w k creates the eage 

Tj ÷T k in SG(L), as desired. [] 

5. MISSING WRITE ALGORITHM 

5.1 How the Algorithm Works 

Transactions run in two modes, normal and 
failure. If T i runs in normal mode, the dbs pro- 
cesses write(x) by writing all copies of x and 
read(x) by reading any copy. If T i runs in 
failure mode, the dbs processes it using a quorum 
consensus algorithm. Copies have version numbers. 
Transactions (in both modes) update version numbers 
as described in the previous section. 

The choice of modes depends on whether T i is 
"aware of missing writes." Informally, T i is aware 
of a missing write on x if (i) T i writes x, but 
does not write all copies of x; or (ii) the "last" 
T k before T i in SG(L) that writes x does not 
write all copies of x. (In case (ii), T i need not 
read or write x itself.) We formalize this defi- 
nition in the next subsection. If T i is aware of 
a missing write, it must run in failure mode, else 
it may run in either mode. For this rule to be 
effective, the dbs must propagate missing write 
information along SG edges. See [ES] for details. 

Transaction T i may begin executing in normal 
mode and become aware of missing updates as it runs. 
When this happens, T i can abort and re-execute in 
failure mode, or it can try to upgrade to failure 
mode on the fly. (In [ES], upgrades are done on the 

fly when T i commits.) 

5.2 Analysis Using Seriallzability Thepr~ 

Transaction T i is maximal for Tj w.r.t, x 
in log L, if T i writes x, and there is a path from 
T i to Tj in SG(L) such that no T k (k ~i,j) 
along the path also writes x. T. is aware of a 
missing write if for some x, (i~ Tj writes x 
but does not write all copies of x, or (ii) some 
T i that is maximal for Tj w.r.t, x does not 
write all copies of x. (In case (ii), Tj need not 

operate on x.) 

A missing write (mw) log is an rd log L such 

that 

(i) If T i writes x, then L contains 
Wl[Xal ] ..... wi[XaZ] for some write quorum 
{Xal ..... Xa~} of x; 

(ii.l) If T_. reads x and is aware of a 
missing write, the3n L contains 

aj [Xal] ~ 

• r. [Xak ] , 1 ~<k~<£ 

a j  [ a,~] 

f o r  some r e a d  q u o r u m  { X a l  . . . . .  Xa, ~} o f  x.  When 
L contains this structure, Tj obeys the VN-rule 
of Section 4. 

(ii.2) If Tj reads x and is not aware of 
any missing writes, L may contain the above 
structure, or simply ri[x a] for some copy x a- 

(iii) Every r~[x ] or aj[x a] follows at 

least one wi[x a] 

(iv) All pairs of conflicting operations are 
< related, where writes on copy x a conflict with 
writes, reads, and accesses on x a. 

Here is an example of an mw log. The data- 
base has data items x and y, with copies Xa, 
Xb, and Yc" The quorums for x (both read and 
write) are {x a} and {Xa,Xb}. The quorum for y 
is, of course, {yc }. The transactions are 

T O = w0[x] T 1 = rl[x] T 2 = w2[x] T 3 = r3[x] 

w0[Y] w2[Y] r3[Y] 

A possible mw log is 

L 5 = 

w0[x a ] 

w0(5o]--~rl [x b ] 

w0[Y c] 

w 2 [x a ] ---~a 3 [Xa]---* r 3 [x a ] 

_..~ a3 [Xb ]/ 

w 2 [Yc ] --~ a 3 [Yc ] ----~r 3 [Yc ] 

Note that T 1 runs in normal mode, but T 3 runs 
in failure mode. T 3 must run in failure mode 
because it is aware of T2's missing write. 

The serialization graph of an mw log embodies 
a write order for each x, because all write 
quorums intersect. However, the graph need not 
contain all necessary reads-before paths. For 
example, 

SG (L s) T0 "/TI ~3 

T 1 reads-x-from T O , T 2 writes x, and T <<x T2, 
and so a I-SG for L 5 must have reads-before path 
from T 1 to T 2. We can extend SG(L 5) into an 
acyclic I-SG by adding the edge T 1 +T 2. To prove 
the algorithm correct, we show that this extension 
works in general. 
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LEMMA I. Let L be an mw log. Let T i read x, 
T k write x, and suppose they are not eonnected in 
SG(L). Then Tj ran in normal mode (i.e., it 
read one copy of x), and T k ran in failure mode 
and did not write all copies of x. 

Proof. If Tj accessed a quorum, it would con- 
flict with every writer of x. If T k wrote all 
copies, it would conflict with every reader of x.D 

LEMMA 2. Let L be an mw log with SG(L) acyclia 
Let T. read-x-from Ti, let T k write x (k#i,j), 
and le~ Ti <<x Tk" Then T k does not precede 
Tj in SG(L). 

Proof. There are two cases. 

i. T. read x using quorum consensus. The 
3 

VN-rule forces Tj to precede T k by an argument 
similar to that in Theorem 4. 

2. Tj read one copy of x. Then T i wrote 
all copies of x, and for T k to precede Tj, T k 
must precede T i. This contradicts the assumption 

Ti <<x Tk" [] 

THEOREM 5. Let L be an mw log. If SG(L) is 
acyclic, then L is I-SR. Thus, missing writes 
is a correct replicated data algorithm. 

Proof. Let G(L) =SG(L) U{T. ÷Tklfor some x and 
Ti, Tj reads-x-from Ti, and3 Ti <<x Tk}; i.e. G(L) 
is SG(L) augmented with all reads-before edges. 
G(L) is clearly a l-SG. We prove that it is 
acyclic. The result then follows by Theorem 2. 

We need two facts about directed graphs. 

Fact I. A cycle v 0+v l÷--- ÷v n÷v 0 in a graph 
~s ~o~inimal if the graph contains an edge, called 
a chord, v i÷vi+ k for 1 ~i~n, k~2. That is, a 
nonminimal cycle can be shortened by substituting 
the chord v i+vi+ k for the path. . v.z ÷v'z+l+''" ÷ 
V. ~ All other cycles are mzntmal. Every cyclic 
l+ 

grap~ has a minimal cycle. 

Fact 2. Let vj and v k be nodes of an acyclic 
g-~aph such that v k does not precede vj. Adding 
the edge vj ÷v k cannot create a cycle. 

The main proof now begins. 

Suppose G(L) is cyclic. By Fact l, G(L) 
contains a minimal cycle C. By Fact 2 and Len~a 2, 
any cycle in G(L) must contain two edges not in 
SG(L); call those new edges. Let us write C in 
the form below, wh~re Tj +T k is a new edge, and 
T~ +T m is the next new edge along the cycle. 

new ~ Tk+ new p T ~ --. ÷T C = Tj --- +T~ n j 

By Lemma i, T k runs in failure mode and has a 
missing write, say, on x. Since C is minimal, no 
T.. between T~. and T£ writes x, else G(L) 

would have the chord T k ÷Tki. The path from T k 
to T Z has no new edges, hence is in SG(L). No 
Tki along this path writes x, hence T k is maxi- 
mal for TZ w.r.t, x. Therefore TZ is aware of 
Tk'S missing write and runs in failure mode, too. 
But this contradicts Lemma 1 which claims that Ti 

runs in normal mode because of the new edge 
TZ +T m. This contradiction proves that cycle C 
cannot exist, and G(L) is acyclic as desired. D 

6. AVAILABLE COPIES ALGORITHM 

6.1 How the Algorithm Works 

The available copies algorithm is an 
embellished form of the incorrect, simple algo- 
rithm given in the Introduction. The idea is to 
ynchronize failures and recoveries with trans- 

actions, by controlling when a copy is deemed 
"available" for use. 

When a site recovers from failure, the dbs 
runs a special INCLUDE transaction for each data 
item copy stored at the site. INCLUDE(Xa) , or 
simply IN(Xa) , brings the value of x a up-to- 
date and declares x a available. When a site 
fails, the dbs runs an EXCLUDE transaction for 
each copy stored there. EXCLUDE(Xa), or EX(Xa), 
declares x a unavailable. 

we make a notational assumption that simplifies 
the discussion: when a site recovers, we treat its 
data as new copies that are joining the system for 
the first time. Thus, each copy has a well-defined 
lifetime. It is born--i.e., joins the system--at 
some point. Then it becomes available through the 
action of an INCLUDE transaction. Later it dies-- 
i.e. fails--and becomes unavailable through an 
EXCLUDE transaction. Once a copy is EXCLUDEd, it 
remains unavailable forever. 

The dbs processes read(x) by reading any 
available copy of x. The dbs process write(x) 
by writing all available copies. The dbs syn- 
chronizes transactions with IN's and EX's to 
achieve four properties. 

i. A transaction can read or write x a only 
when it is available. 

2. Suppose T i reads x a and Xa'S site 
subsequently fails. Then T i must "logically 
precede" EX(Xa). 

3. If T i writes x, condition (2) must hold 
for at least one copy T i writes. 

4. If T i writes x and Xa'S site fails 
before T i is able to write x a, then EX(x a) 
logically precedes T i. On the other hand, if a 
new copy x b is INCLUDE'd while T i is running 
and T i does not write Xb, then T i logically 
precedes IN(Xb). 

Let us apply these properties to the example 

used in the Introduction. Log L 6 reproduces that 
example in log notation. 

w0[x a] ,, Prl[Xa]~ ~wl[Y c] 

5 6 = w0 [Xb] ~ / /  
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The diagram below indicates the logical precedence 
order required by the algorithm. The edge labels 
tell why each edge is present in the diagr~n: "1-4" 
means that the edge is needed to satisfy the 
corresponding property; "SG" stands for "seriali- 
zation graph" and means that the edge represents 
the order of conflicting operations. 

//~2 ~ ~\ 
IN(Xa)~ 1 ~ T1 ~ EX(Xa)~ 

~T 0 \ / 
l/ 

IN(Yc )/L/ SG 3 EX(y c) 

This diagram has a cycle: TI~EX(x a) +T2~EX(y d) ~ 
T I. An available copies algorithm prevents bad 
logs like L 6 by ensuring that the "logical pre- 

cedes" relation has no cycles. 

6.2 Serializability Theory for Available Copies 

This section develops the serializability 
theory needed to analyze the available copies algo- 

rithm. As in Section 3, we focus on the reads and 
writes executed by the dbs on behalf of user trans- 
actions, T O , T I, .... We treat IN and EX 
quite abstractly, specifying their behavior with a 
few properties that relate them to user trans- 

actions. 

The theory addresses two main problems. One is 
to model the way INCLUDE's bring copies up-to-date. 
The other is to model the way IN's and EX's are 
synchronized with user transaction{. 

Modelling INCLUDE's 

For each x, we designate one copy to be its 
initial copy. The initial copy is the first one 
to join the system. When this copy is INCLUDE'd, 
there is no need to bring it "up-to-date," because 
there is no value of x yet. The first user 
transaction to operate on the copy must create 
its initial value by writing it. This trans-- 
action must run before any other copies of x can 

be INCLUDED. 

A subsequent INCLUDE, say IN(Xa) , must 
bring x a up-to-date. It doer this by 
(i) reading the value of x produced by some 

transaction Ti, and (ii) writing that value 
into x a. (Later, we explain how to make sure 
the value read is up-to-date.) IN(x a) can 
read-from T i by reading a copy of x that 
T i wrote. [ABG], or by reading the value of 
from a special place called a spooler [HS]. 

Suppose Tj reads-x-from IN(Xa). The value 

read by T i is precisely the value written by T i, 
and we say that Tj indirectly reads-x-from T i- 
All other reads-froms are d~rect, we extend our 
notion of log equivalence. Two logs over the same 
user transactions are equivalent if they have the 
same direct and indirect reads-from's. Finally, we 
extend the definition of I--SG to required that if 

T. indirectly reads-from Ti, there is a path from 
T~ to Tj. It is easy to verify that Theorem 2 
remains valid under these extensions. 

Suppose T k writes x a. We require that this 
write occurs after the write done by IN(Xa). 
Therefore, if Tj reads-x-from IN(x a) and T k 

writes Xa, then rj[x a] <Wk[Xa]. 

Available Copies Serialization Graphs 

Let L be an rd log over user transactions 
T O ..... T . An available copies serialization 
graph (A~SG) for L is a directed graph whose 
nodes represent T0,...,Tn, and IN(Xa), EX(x a) 
for each copy x a referenced in L. The edges 

among user transactions are: 

SG Edges. T i+T. if for some x a, r. [x a] < 

wj[Xa] , or wi[Xa] <r~[Xa], or wi[x a] <wj~Xa]; 

RF Edges. T i +Tj if for some x, Tj 

indirectly reads-x-from T i . 

The edges relating user transactions to IN's 

and EX's are: 

ACI. IN(x a) + T i if T i reads or writes Xa; 

A£2. T i ÷EX(Xa) if T i reads Xa; 

AC__~%. T i÷Ex(x a) if T i writes x, for at least one 
copy x a that T i writes. 

AC4. EX(x b) +T i or T i+IN(x b) if T i writes x, 
but does not write copy x b. 

To ensure that INCLUDE's read up-to-date values, 
we place one more constraint on ACSG's. Let << 
be the precedence order of an ACSG. Transaction 
T i is up-to-date for IN(x a) if T i writes x, 

T i << IN(Xa), and no Tk, T i <<T k << IN(x a) also 
writes x. We require that if IN(x a) reads-from 
Ti, then T i is up-to-date for IN(Xa). 

We now prove that if L has an acyclic ACSG, 

then L is I-SR. 

LEMMA 3. An ACSG for L embodies a write order 
for each data item x. 

Proof. Let T i and T k write x. If they write 
the same copy, they are connected by an SG edge. 
So, assume they write disjoint sets of copies. Let 
x a be a copy T i writes in observance of AC3. By 

AC4, T k +IN(x a) or EX(x a) ÷Tk; by ACI, 
IN(x@) +Ti; by AC3, T i+EX(xa). Multiplying these 

condltions together, we get T k + IN (x a) +T i or 
T i+EX(xa) ÷T k. In both cases, T i and T k are 
related. D 

Consider an ACSG for L, and let << be its 
precedence order. The ACSG embodies a reads-before 
order for x, if for all distinct Ti, Tj, and T k, 
if Tj reads-x-from T i, T k writes x, and T i <<T k 

then Tj << T k- 

LEMMA 4. An acyclic ACSG for L embodies a reads- 
before order for each data item x. 

Proof. Let Tj read-x-from Ti, let T k also write 
x, and let T i << T k. Let x a be the copy Tj reads 
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There are four cases. 

Case I. T i and T k write x a. Since T i <<T k 
a--~-d-ACSG is acyclic, w. [x_] <W,o[X ]. By definition 1 ~ ~ a 
of reads-from, this implies r~. [x=] <w,.[x~], whlch 
introduces the SG edge Tj ÷T k. 

Case 2. T i writes x , but TI. does not. By AC4, 
Tk----~I~(x ) or EX(xa)a+Tk ; by ~CI, IN(x a) +Ti; by 
AC2, T. +aEx(x_). Multiplying these conditions, we 
get T3÷IN(Xa ) +T i or Tj ÷EX(x a) +T k. The first 
term is impossible, since T i << T k and ACSG is 
acyclic. We are left with the second term which 
implies Tj <<T k as desired. 

Case 3. T i does not write Xa, but T k does. In 
this case, Tj's reads-from is indirect, and 
rj[x a] <Wk[X a] by the observation made earlier in 
the section. As in Case i, this gives Tj +T k- 

Case 4. Neither T i nor T k writes x a. Again, 
Tj's reads-from is indirect, and IN(x a) reads- 

from T i. By AC4, Tk+IN(x a) or EX(x a) +T k. 
Since T i <<Tk, the first term implies that T i is 
not up-to-date for IN(x a), contradicting the 
definition of ACSG. As in Case 2, the second term 
plus AC2 gives Tj ÷EX(Xa) ÷T k. [] 

THEOREM 6. If L has an acyclic ACSG, then L is 
I-SR. Thus, available copies is a correct replicated 
data algorit~n. 

Proof. Let << be the ACSG's precedence order. By 
Lemmas 3 and 4, the restriction of << to user 
transactions is an acyclic I-SG. The result follows 
by Theorem 2. [] 

7. CONCLUSION. 

We have extended serializability theory to 
account for failures and recoveries in replicated 
databases. The main idea is one-copy serializabi- 
lity: an execution of transactions in a replicated 
database is one-copy serializable (I-SR) if it is 
equivalent to a serial execution of the same trans- 
actions in a non-replicated (one-copy) database. A 
replicated data algorithm is correct if all of its 
execution are 1-SR. We gave a graph structure, 
one-copy serialization graphs (1-SG's), for testing 
if an execution is I-SR. I-SG's are analogous to 
the serialization graphs used in conventional 
serializability theory. 

We applied the theory to three algorithms: 
quorum consensus, missing writes, and available 
copies. In the simplest form of quoru/r~ consensus, 
a transaction writes logical data item x by 
writing a majority of its copies; a transaction 
reads x by accessing a majority of copies and 
reading the most up-to-date one. In missing writes, 
a transaction runs in either of two modes. If the 
transaction is "aware" of missing writes, it uses a 
quorum consensus algorithm; else, to write x, it 
writes all copies of x, and to read x, it reads 
any copy. In available copies, a transaction writes 
x by writing all "available" copies of x; and 
reads x by reading any "available" copy. Copies 
become available and unavailable in a synchronized 
manner through special INCLUDE and EXCLUDE trans- 
actions. 

Our analysis concentrates on the ordering of 
events imposed by each algorithm. We pay no 
attention to the mechanisms used to implement these 
orderings. As a result, our treatment is quite 
abstract and ignores many algorithmic issues. The 
gap between analysis and algorithm is modest for 
the first algorithm we treat (quorum consensus), 
but widens as the paper proceeds. We regard 
bridging this gap to be an important area for 
future research. 
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