
Synchronizing Time Servers

Leslie Lamport

June 1, 1987

c©Digital Equipment Corporation 1987

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgement of
the authors and individual contributors to the work; and all applicable por-
tions of the copyright notice. Copying, reproducing or republishing for any
other purpose shall require a license with payment of fee to the Systems
Research Center. All rights reserved.

Author’s Abstract

A time service in a distributed system may be used both for multiprocess
synchronization and for simply finding out what time it is. For synchroniza-
tion, the time provided by different servers should be closely synchronized.
For telling time, the time provided by each server should be a close approx-
imation to Universal Time (the international time standard). Algorithms
are presented for implementing a fault-tolerant time service that meets both
requirements.

Capsule Review

Users of electronic mail are not surprised to see messages that are time-
stamped after they were received. The naive blame the probably non-
existent operator, “who didn’t get the time right.” The wary know that
many computer systems go for long periods without stopping; during those
periods adjustments are difficult or impossible because almost all time-
dependent processes (for example, file systems, mailers, audit trails, back-up
mechanisms, etc.) assume that the time provided by the local operating sys-
tem is increasing smoothly. Hence a good time service not only must be close
to the real time, but also must increase and maintain only a bounded rate
of change.

For some applications (for example, distributed data bases), there is a
third requirement: the times maintained by various processors within a net-
work must be very close to each other. This requirement is so stringent that
it is not enough simply to ensure that the time provided by each processor
is within a certain limit of the real time. Resynchronizations with the real
time must therefore be coordinated.

The final requirement of a good time service is that the resynchronization
protocol must allow a certain number of faulty links or faulty processors since
network protocols ought to work in the presence of partial failures.

Previous authors have presented algorithms that satisfy some of these
requirements, but the algorithm described here is the first that satisfies all
four simultaneously. Another attribute of the paper is that both the problem
and the solution are precisely formulated.

iv

Contents

1 Introduction 1

2 Notation and Assumptions 4
2.1 Intervals . 4
2.2 Clocks and Clock Ranges . 5
2.3 The Network . 7

3 Obtaining Universal Time 9

4 Providing The Service Time 11
4.1 Ideal Time . 11
4.2 Synchronization and Time-Correctness of Ideal Clocks 17
4.3 Broadcasting Universal Time 22
4.4 The Complete Algorithm . 25

Glossary 27

Acknowledgments 29

References 31

Index 33

vi

1 Introduction

A time service provides the “current time” to its users. It performs two
functions:

• Telling a user the current time and date.
• Allowing different users to synchronize their activities.

Though related, these two functions are distinct. The first requires that the
time provided be approximately equal to Universal Time—the ideal stan-
dard that is approximated by the National Bureau of Standards’ broadcasts
on station WWV. The second requires that the time provided to different
users be approximately the same.

Marzullo [6] devised algorithms for providing an accurate time and date,
and a number of fault-tolerant synchronization algorithms have been pro-
posed [2, 4, 5], but there has apparently been no previous work that consid-
ered both functions at the same time. In this paper, I consider the problem
of implementing a fault-tolerant time service that provides a single time
value to perform both functions—more precisely, a time value that permits
close to optimum synchronization and is a reasonable approximation to the
correct time and date.

The problem to be solved is stated somewhat informally in this intro-
duction. Section 2 states the assumptions and conditions more precisely and
defines some helpful notation. (A glossary is provided at the end of the paper
to help the reader follow the notation.) Section 3 describes Marzullo’s algo-
rithm for computing the best possible approximation to the correct time and
date, and Section 4 develops an algorithm for a time service that provides
the two functions.

The algorithms assume a network of processes, in which each node has a
local clock that runs at approximately the correct rate, and some nodes also
have direct access to Universal Time, perhaps obtained by “listening” to
WWV. A time server is implemented by synchronizing all the nodes’ clocks,
using the available information about Universal Time.

The nodes providing the time service may be a subset of the nodes
in the complete system—the other nodes interrogating the time servers to
obtain time information. However, nodes that do not act as time servers
or providers of Universal Time are ignored. The time service must function
properly despite the failure of some network components.

A time service could provide two distinct values to satisfy its two different
functions. For the function of providing the current time and date, a process

1

p would provide a time interval Ip that is its best approximation to Universal
Time. More precisely, Ip would be the smallest interval that p knows to
contain UT , the current Universal Time. (It is most common to write a
value with error bound in the form t± ε. However, it is more convenient to
work with the interval [t− ε, t+ ε] within which the correct value is known
to lie.)

For the second time-service function, p must provide a time Tp, called
service time, that is close to the service time Tq provided by any other node
q. More precisely, it should provide Tp and, for each other node q, a number
δpq such that |Tp− Tq| < δpq. However, this condition is not sufficient, since
it is trivially met by letting each Tp always be zero. To represent time, Tp
should change at approximately the same rate as UT , so the value of Tp
increases by about one second with the passage of one second of Universal
Time.

While not strictly necessary, it is convenient to have Tp not only change
at approximately the same rate as UT , but be approximately equal to it.
Consider, for example, the problem of generating creation times for files.
One might want to use the creation time to decide which version of a file
is the current version. Since versions may be created at different nodes, a
file generated at node p should use Tp as its creation time to minimize the
likelihood that a version created at one node receives an earlier creation time
than a version created before it at a different node. However, one might also
want a creation time to tell the Universal Time at which the file was created,
so the user can determine the actual date and time of creation. This could
be accomplished by recording a separate “universal creation time” derived
from Ip. However, this additional value is not needed if Tp provides an
acceptable approximation to UT .

We therefore state the following three requirements for the time Tp pro-
vided by node p, where κp, εp, and the δpq are values provided by p. (They
could be constants that are announced when the system is “turned on”, or
they could be provided in response to user requests.)

correct rate The rate of change of Tp with respect to UT lies between
1− κp and 1 + κp.

synchronization For every other node q: |Tq − Tp| < δpq.

correct time |UT − Tp| < εp.

The synchronization requirement follows from the correct-time require-
ment by letting δpq = εp + εq. However, this may not provide close enough

2

synchronization. Universal Time is of interest mainly to humans; synchro-
nization algorithms depend only upon the differences between the values
of Tp at the different nodes. Humans seldom need to know the value of
UT to better than a few seconds, so an εp of several seconds is acceptable.
On the other hand, synchronization algorithms may have more stringent
requirements for δpq. When nodes p and q are using the time service for
synchronization, p generally incurs a delay of O(δpq) seconds because of the
lack of synchrony of Tp and Tq. For example, if q announces that it will
release a resource at time t (that is, when Tq equals t), then p must wait
until Tp reaches t + δpq before acquiring the resource. Some applications
might require that this delay be kept to within a few microseconds.

While it is not necessary to keep the εp as small as the δpq, the required
synchronization condition can be achieved if εp could be kept small enough.
However, this is not always possible. The closeness with which clocks at
different nodes can be directly synchronized depends upon the uncertainty
in message transmission time between those nodes. Modern large networks
are heterogeneous, and the uncertainty in transmission times may be very
different for different pairs of nodes. Typically, a large network consists
of a collection of local area networks (LANs) that are interconnected by
point-to-point links. Nodes on a single LAN may be directly connected by
a fiber-optic link, in which the uncertainty in transmission time can be as
small as a few microseconds if the timing functions are performed at a low
enough system level. The nodes in different LANs may communicate with
one another by a store-and-forward protocol that could have an uncertainty
of a second or more in transmission time.1 If a particular LAN does not
include a direct source of Universal Time (such as a WWV receiver), so
nodes in the LAN must base their knowledge of UT on messages received
from outside the LAN, then the values of εp and εq for p and q in the LAN
could be several orders of magnitude greater than the best achievable value
of δpq.

Marzullo [6] presented algorithms for obtaining a clock value from a set
of clocks, some of which may be faulty. These algorithms can be used to
provide the intervals Ip that best approximate Universal Time, but they do
not satisfy the synchronization condition if δpq < εp+ εq. Several Byzantine

1Such a large value results not from uncertainty in the physical transmission times, but
because the communication involves higher-level protocols, separated from the physical
messages by many layers of software. It is quite likely that the timing of transmission
delays can be done at a lower system level for intra-LAN messages than for inter-LAN
messages.

3

clock synchronization algorithms have been presented that can be used to
satisfy the correct-rate and synchronization conditions in the presence of
failures [2, 4, 5]. However, to my knowledge, there have been no published
algorithms to achieve all three of the conditions above.

The major part of this report concerns algorithms for achieving the syn-
chronization condition when δpq may be much smaller than εp + εq. This is
a nontrivial problem in the presence of failures, because even very simple
kinds of failure act like malicious, “Byzantine” failures. For example, sup-
pose a node is sending its clock value to all other nodes in the network. It
does this by sending a message saying something like “my clock now reads
11:47”. Suppose, through some hardware or software error, it pauses for five
minutes in the middle of this broadcast. While it sends the same message to
all nodes, it has essentially sent descriptions of two clocks that differ by five
minutes. Thus, this simple error results in a “two-faced” clock that provides
different clock values to different nodes.

The correct-time requirement does not mention the interval Ip, which
represents p’s knowledge of UT . One might be tempted to replace this re-
quirement by the condition that Tp be in Ip. However, such a condition
would be inconsistent with the other two requirements for Tp. It is inconsis-
tent with the correct-rate requirement because new knowledge of the correct
value of UT , such as the receipt of a message from a node with a WWV re-
ceiver, could suddenly reduce the width of the interval Ip. Keeping the value
of Tp within the interval Ip could require a sudden change to Tp, which is
prohibited by the correct-rate requirement. It can also be shown that, with
malicious failures, requiring Tp to be within Ip could require violating the
synchronization requirement if δpq < εp + εq.

2 Notation and Assumptions

In the introduction, the term node was used to emphasize that each node in
the network provides a time service for user processes running at that node.
To be consistent with the terminology commonly used in discussing clock
synchronization, the term process will be used instead of node.

2.1 Intervals

The term interval is used to denote a closed interval on the real line—that
is, an interval of the form [x, y] for x ≤ y. The width of the interval R is
denoted by ‖R‖, so ‖[x, y]‖ = y − x. The sum of two intervals is defined by

4

[x, y] + [z,w] = [x+ z, y +w]. A real number z is considered to be the same
as the interval [z, z], so [x, y] + z is defined to be the interval [x + z, y + z]
obtained by translating the interval [x, y] to the right a distance of z. For
any interval U and number δ > 0, U ± δ is defined to equal U + [−δ, δ], so
[x, y]± δ = [x− δ, y + δ].

A pseudo-metric d on intervals is a nonnegative, real-valued function
on pairs of intervals satisfying the following properties for all intervals U ,
V , and W : (i) d(U, V) = d(V,U), (ii) d(U, V) + d(V,W) ≥ d(U,W), and
(iii) d(U,U + ε) = ε for any ε ≥ 0. A pseudo-metric satisfying the additional
property that d(U, V) = 0 implies U = V is called a metric. (A metric is
sometimes called a distance function.)

Two important pseudo-metrics are

• The midpoint pseudo-metric dm, where dm(U, V) equals the distance
between the midpoints of U and V .

• The uniform metric du, where du([x, y], [v,w]) equals the maximum of
|v − x| and |w − y|.

As its name implies, the uniform metric is a metric. Note that for any
intervals U and V , dm(U, V) ≤ du(U, V).

A real-valued function F on m-tuples of intervals is said to satisfy the
Lipschitz condition for a pseudo-metric d if, for any intervals Ui and Vi
and any number δ > 0: d(Ui, Vi) < δ for all i implies |F (U1, . . . , Um) −
F (V1, . . . , Vm)| < δ. The function F is said to be translation invariant
if F (U1 + x, . . . , Um + x) = F (U1, . . . , Um) + x for any intervals Ui and
real number x. Satisfying the Lipschitz condition is a stronger requirement
than continuity and a weaker requirement than having a bounded deriva-
tive. Translation invariance asserts that translating all arguments by a fixed
amount causes the value to be translated by the same amount. We expect
any functions appearing in a clock synchronization algorithm to be trans-
lation invariant, since increasing all input clock values by a fixed amount
should produce a corresponding increase in the clock values computed by
the algorithm. Observe that if F satisfies the Lipschitz condition for the
pseudo-metric dm, then it also satisfies the condition for the metric du.

2.2 Clocks and Clock Ranges

A time-dependent value is any real-valued function of a real variable. If v is
a time-dependent value, we interpret v(t) to be the value of v at Universal

5

Time t. A clock is a nondecreasing time-dependent value. If V is a clock, the
value V (t) represents the value read by clock V at Universal Time t. The
identity function, denoted by UT (so UT (t) = t), is a clock. The service
time Tp provided by process p is a clock, where Tp(t) represents the time
value provided by p to a request for the current service time received at
Universal Time t. (Of course, p does not need to know the current value of
Universal Time to compute the value of Tp at that time.)

Let V1, . . . , Vn be clocks. (Think of Vp as a clock maintained by process
p.) The following definitions express the correctness conditions introduced
informally in the introduction. They describe conditions on these clocks for
an interval of time [u, v], where u and v represent clock values—that is, times
indicated by the clocks themselves. Thus, the conditions express properties
of the clocks over intervals [s, t] of Universal Time such that Vp(s) = u and
Vp(t) = v for a process p. The conditions are expressed in this form because
clock times are directly observable, Universal Times are not. The bounds
κp, δpq, and εp are time-dependent values. (In many cases, they will be
constants.)

correct rate with bounds κp: For each p and any x and y, x �= y such
that Vp(x) and Vp(y) are in [u, v]:∫ y

x
(1− κp(t)) dt < Vp(y)− Vp(x) <

∫ y

x
(1 + κp(t)) dt

synchronization with bounds δpq: For each p and q, p �= q, and each t
such that Vp(t) is in [u, v]: |Vq(t)− Vp(t)| < δpq(t).

correct time with bounds εp: For each p and each t such that Vp(t) is in
[u, v]: |UT (t)− Vp(t)| < εp(t).

The correct-rate condition is defined in terms of integrals to avoid requiring
that the Vp be differentiable functions of time. When no interval is specified,
these conditions are assumed to hold for all intervals.

Each nonfaulty process p is assumed to have a clock Cp, called its local
clock.2 It is assumed that the local clocks of all nonfaulty processes satisfy
the correct rate condition with bounds ρp 	 1, where the ρp are constants.
(An error in the local clock Cp is considered to be a failure of process p.)

A p-clock is a clock of the form Cp + v for some constant v—that is, a
clock whose value at time t is v+Cp(t). A p-clock is one that runs at the same

2It is sufficient for p to have a cyclic timer, since one can construct a monotonic clock
from such a timer. In fact, the algorithms are easily modified to work with only a timer.

6

rate as p’s local clock. Of course, Cp is a p-clock. A p-clock Vp is determined
by its value at any single time t0, since Vp(t) = Vp(t0) − Cp(t0) + Cp(t).
Note that Tp, the time-service clock provided by p, will not in general be a
p-clock.

The following result is an easy consequence of the assumption that Cp
satisfies the correct-rate condition. It asserts that the uncertainty ρp in the
running rate of p’s local clock causes its knowledge of Universal Time to
degrade at a rate of ρp seconds per second of elapsed time on its local clock.

Proposition 1 If process p is nonfaulty and R is an interval such that
UT (t0) ∈ R, then for all t ≥ t0:

UT (t) ∈ R+ (1± ρp)(Cp(t)− Cp(t0))

where terms of order ρ2
p(t− t0) are neglected.

A clock range is an interval-valued function on the reals of the form [x, y]
where x and y are clocks. In other words, R is a clock range if there exist
clocks x and y such that R(t) = [x(t), y(t)] for all times t. A p-clock range
is a clock range of the form [x, y] such that x and y are p-clocks. A p-clock
range can be written as U + Cp for some interval U . Since a real number
x is identified with the interval [x, x], a clock is a special case of a clock
range, and a p-clock is a special case of a p-clock range. A p-clock range is
determined by its value at any single time.

If F is a real-valued function on m-tuples of intervals, then applying F
to an m-tuple of clock ranges produces a time-dependent value. Let R1, . . . ,
Rm be p-clock ranges with Ri = Ui+Cp for intervals Ui. If F is translation
invariant, then

F (R1, . . . , Rm) = F (U1, . . . , Um) + Cp

Thus, if the Ri are p-clock ranges, then F (R1, . . . , Rm) is a p-clock.

2.3 The Network

I assume a network of processes connected by channels, where a channel
may connect more than two processes. The two kinds of channels that are
of interest are a point-to-point channel that has a single sender and a single
receiver, and a broadcast channel that connects a set of processes so that
any one of them can broadcast a message over it to all other processes on

7

the channel. A two-way communication line is a broadcast channel that
connects just two processes.

Certain of the processes, called Universal Time providers, are assumed
to have a direct source of Universal Time. Let UT (j) denote the value of
UT obtained by process j. This value is a clock range that is known to
contain the correct value of Universal Time, so UT (t) ∈ UT (j)(t) for any
time t. Process j will periodically broadcast UT (j) to other processes.

For each channel c, I assume values τ cmin and τ cmax such that a message
sent over c at time t is received between times t + τ cmin and t + τ cmax if the
sender, the receiver, and c are all nonfaulty. More precisely, if an event, such
as the receipt of another message, that occurs at the sender at time t causes
the sending of a messageM over channel c, thenM will be received between
times t+ τ cmin and t+ τ cmax. Thus, the minimum and maximum delays τ cmin

and τ cmax include the time needed to generate and send the message as well
as the time the message was actually in transit along channel c. The values
of τ cmin and τ cmax may vary with time, but they are assumed to be known to
the receiver. Let γc denote τ cmax − τ cmin.

Delivering a message with a delay less than τ cmin or greater than τ cmax

constitutes a channel failure. If there is unpredictable variance in transmis-
sion delay, due, for example, to variation in the channel loading, then τ cmin

and τ cmax should be chosen conservatively to reduce the probability of such
a failure. (Note that τ cmin can always be taken to be zero.) However, the
time required for fault-tolerant synchronization algorithms depends upon
the values of τ cmax, not on the actual delays, and the bounds δpq on clock
synchronization depend upon γc, so tradeoffs between reliability and effi-
ciency must be made when choosing the values of τ cmin and τ cmax.

A path is a sequence of processes and channels, each channel connecting
successive processes. The null path connects process p to itself. If π is a
path from p to q and ψ is a path from q to r, then πψ denotes the obvious
path from p to r via q.

For a path π from p to q, let τπmin and τπmax denote the sum of all τ cmin

and τ cmax, respectively, for all channels c in π. Thus, τπmin and τπmax represent
the minimum and maximum transmission delays for a message relayed from
p to q along π. Define γπ to be τπmax − τπmin, the uncertainty in transmission
delay along π.

Fault-tolerant synchronization algorithms require that a process know
the values τπmin, τ

π
max, and γπ for messages it receives over the path π, which

usually requires knowledge of the values of τ cmin and τ cmax for each channel
c in the path. If these values can change, then new values can be broadcast

8

using the method of [3], which assures that the same values are used by all
processes. For simplicity, I assume that the τπmin, τ

π
max, and γπ are constants

for each fixed path π.
If R is an interval and π a path, then Rπ is defined to be the interval

R+[τπmin, τ
π
max]. Suppose that π is a nonfaulty path from process p to process

q, and R represents p’s knowledge of Universal Time at a certain time t—
that is, p knows that UT (t) ∈ R. If p sends a message with the value R
along π to q and that message arrives at time t′, then since the transmission
time of the message is in the interval [τπmin, τ

π
max], q knows that UT (t′) ∈ Rπ.

Observe that if πφ is a path, then Rπφ = (Rπ)φ.
Synchronization algorithms require processes to send clock ranges to

one another. (Remember that a clock is a special case of a clock range.)
A process p sends a p-clock range by sending a message with the clock
range’s current value R along a path π. The receiving process q interprets
this message as the receipt of a q-clock range whose value, at the time the
message is received, is Rπ. The following result asserts that transmitting
a clock range in this way causes an initial perturbation by a distance of
up to γπ, after which the two clock ranges drift apart at a rate of at most
ρp + ρq, where distance is measured by the uniform metric du on intervals.
This result is a simple consequence of the correct-rate assumption for the
local clocks and the assumed bounds on message-transmission times.

Proposition 2 Let Rp be a p-clock range, and suppose that process p sends
a message at time t that is received at time t′ over a nonfaulty path q, and
let Rq be the q-clock range such that Rq(t′) = Rp(t)π. Then for any ∆t ≥ 0:

du(Rp(t+∆t), Rq(t+∆t)) ≤ γπ + (ρp + ρq)∆t

where terms of order ρqτ
π
max are neglected.

3 Obtaining Universal Time

Let us now consider how a time server p could provide the best possible
value of Ip, an interval known to contain UT . Assume that each Universal
Time provider j maintains a clock range UT (j) that represents its current
knowledge of Universal Time. If j is nonfaulty, then UT (t) ∈ UT (j)(t) for all
times t. At various times, provider j broadcasts the current value of UT (j).
Let UT (j)

p denote a clock range that represents p’s knowledge of the current
value of UT (j). More precisely, assume that, if j and p are nonfaulty, then

9

UT (t) lies within the interval UT (j)
p (t) for all times t. If p receives a message

at time t0 informing it that UT (t0) lies in the interval R, then Proposition 1
implies that we can define UT (j)

p by

UT (j)
p (t) = R+ (1± ρp)(Cp(t)− Cp(t0))

for t ≥ t0. In fact, this is how UT (j)
p (t) should be defined if p did not receive

any information about UT (j) during the time interval [t0, t]. The problem
of how j broadcasts the value UT (j) is considered later.

The algorithm for computing the best approximation to UT from a set
of m intervals, each asserted to contain UT , was first obtained by Marzullo.
It appears as Algorithm 4-2 in his thesis [6]. Define Mf

m(U1, . . . , Um) to be
the largest interval whose endpoints belong to at least m−f of the intervals
Ui. It is not hard to show that, if one knows only that UT lies in all but
at most f of the intervals Uj, thenMf

m(U1, . . . , Um) is the smallest interval
known to contain UT . The value ofMf

m(U1, . . . , Um) can be computed from
the set of m intervals Ui in O(m logm) time by sorting their endpoints. It
can be recomputed in O(m) time if just one of the Ui changes.

If the intersection of U1 with Mf
m(U1, . . . , Um) is empty, then

Mf
m(U1, . . . , Um) = Mf−1

m−1(U2, . . . , Um). In this case, U1 is known to be
one of the intervals that does not contain UT (there are at most f of them),
so it may be thrown away when computing the best approximation to UT .
After throwing it away, we are left with m − 1 intervals, all but at most
f − 1 of them containing UT . More generally, if k of the Ui have an empty
intersection with Mf

m(U1, . . . , Um), then Mf
m(U1, . . . , Um) equals the value

obtained by throwing away those k intervals and applying Mf−k
m−k to the

remaining intervals.
Assume that up to f of the m values UT (j)

p may be incorrect, where an
interval UT (j)

p is correct if UT always lies within it. The obvious way to
choose Ip, an interval that process p knows to contain UT , is to let it equal
Mf

m(UT (1)
p , . . . ,UT (m)

p). However, suppose that at some time when Cp has
the value C, Mf

m(UT (1)
p , . . . ,UT (m)

p) equals the interval U . When Cp has
the value C+∆C, UT must lie in the interval U+(1±ρp)∆C. However, the
intervals UT (j)

p are spreading out at a rate ρp, which could cause the value
of M to spread out at a faster rate—in fact, to make large, discontinuous
jumps. Thus, when Cp has the value C +∆C,M(UT (1)

p , . . . ,UT (m)
p) could

be a larger interval than U + (1± ρp)∆C.
In Marzullo’s algorithm, p computes an initial value Ip(t0) from initial

10

values UT (j)
p (t0) of the UT (j)

p as follows. It throws away any of the UT (j)
p (t0)

that it decides are incorrect. If m− k intervals are currently believed to be
correct, then the interval Ip(t0) equals Mf−k

m−k applied to the m− k correct

intervals UT (j)
p (t0). If no new values are received from the Universal Time

providers between times t0 and t, then, ignoring terms of order ρ2
p(t − t0),

Ip(t) is defined by

Ip(t) = Ip(t0) + (1± ρp)(Cp(t)− Cp(t0))

In other words, when p receives no new information, the interval Ip advances
(moves right along the number line) at p’s clock rate and widens at the rate
of 2ρp seconds per second of clock time.

When a new value for UT (j)
p arrives, process p adds the value to the

set of intervals that it presumes to be correct, throwing away the previous
value of UT (j)

p . Process p next computes Ip by applyingMf−k
m−k to the m−k

intervals currently presumed correct. It then declares to be incorrect any
of these intervals (the ones it had presumed to be correct) that have empty
intersections with Ip.

When no new information is received from the Universal Time providers,
the value of Ip “deteriorates” at the rate of ρp seconds per second. To
maintain the accuracy of Ip, it is necessary for the Universal Time providers
to broadcast their values of UT (j) sufficiently often. Suppose that a provider
j sends its clock range UT (j) to p at time t by simply sending a message
with the interval UT (j)(t) along some path π. If p receives this message at
time t′, it sets UT (j)

p (t′) to UT (j)(t)π. Suppose that each provider j sends
UT (j) in this way at least once every J seconds over a path π with γπ ≤ γ.
It is then easy to show that if ‖UT (j)‖ < ε for every nonfaulty provider j
and at least m − f of the time providers and their paths π are nonfaulty,
then Marzullo’s algorithm guarantees that for all times t, Ip(t) is contained
within the interval UT (t)± (ε+ γ + ρpJ).

4 Providing The Service Time

4.1 Ideal Time

A time server p periodically receives information allowing it to refine the
clock Tp that represents the service time it provides to its clients. Informa-
tion comes in discrete lumps—usually through the receipt of a message. To
maintain the continuity of Tp—more precisely, to maintain the boundedness

11

of its rate of change—the value of Tp cannot change instantly in response
to new information. Instead, the rate of change of Tp is modified discontin-
uously. This section presents a method for computing Tp’s rate of change.

Process p computes Tp from its clock Cp by the formula:

Tp = apCp + bp

where ap and bp are constants that are changed discontinuously—that is,
they are piecewise constant functions of time. The value bp represents a
zero-point correction;3 the value ap represents a correction to the running
rate of Cp. I will discuss the way ap changes; the change to bp is determined
by the requirement that Tp be continuous and will be ignored.

There are two corrections embodied in the value of ap: a correction to
compensate for the measured inaccuracy of the local clock Cp, and a cor-
rection to bring Tp into synchrony with UT and with the times Tq provided
by other servers q. The component of ap that compensates for the inaccu-
racy of Cp effectively reduces the error ρp in its rate. It can be obtained by
comparing Cp with Ip for a long enough period of time. I will ignore this
component and assume that any difference between ap and 1 is meant as a
correction to achieve synchronization. Such a correction actually increases
the error κp in the rate of change of Tp. This increase is unavoidable. If
clock synchronization is to be maintained, κp must be allowed to become
larger than ρp, the inherent error in the rate of p’s local clock.

It is easiest to describe synchronization algorithms in terms of discon-
tinuously resetting the time. There are a sequence of resynchronization
times T (0), T (1), T (2), . . . at which processes resynchronize. Every process
p changes ap when Tp = T (i), so the T (i) represent service times. For con-
venience, I assume that all processes resynchronize at every time T (i)—a
process p that does nothing at that time can be thought of as performing a
resynchronization in which the new value of ap equals its old value. Time
T (0) represents the service time at which the system is started.

Resynchronization may actually be performed by having every process
agree when their time Tp should read T (i). However, for this discussion, it is
more convenient to have a process convert this into the inverse information:
the time that Tp should read when it actually reads T (i). Assuming ρp 	 1,
if p discovers that Tp should read T (i) when it actually reads T (i) + ∆T ,
then it knows that Tp should read approximately T (i)−∆T when it actually
reads T (i).

3If Cp is actually a cyclic timer instead of a monotonic clock, then bp is incremented
every time Cp is reset to zero.

12

At the ith resynchronization, process p thus learns what the “correct”
service time should be when Tp reads T (i), and uses this information to reset
ap. (The resynchronization must be carried out in such a way that p receives
this information before its clock reaches T (i).) Here, the “correct” time is
the one that is agreed upon by all processes as the one to which they want to
resynchronize. The most convenient way to describe resynchronization is to
have pmaintain an “ideal” p-clock C

(i)
p , that keeps the “correct” time learned

during the ith resynchronization—in other words, C(i)
p is the p-clock that has

the “correct” time when Tp equals T (i). Hence, C(i)
p represents p’s knowledge,

as of time T (i), of what the current service time should be. This knowledge
becomes obsolete at service time T (i+1), when the resynchronization provides
p with more recent information about the “correct” time. Initially ap = 1
and Tp = C

(0)
p , so Tp equals C

(0)
p from the time T (0) when the system is

started until T (1).
To resynchronize Tp at service time T (i), p resets the rate of change of Tp

so that, in the absence of any further resynchronization, Tp would equal C
(i)
p

after exactly J seconds, where J is some fixed constant. In other words, if p
learned that, when Tp reads T (i), the service time should be Tp+∆T , then p
sets ap equal to 1+ (∆T/J). Thus, Tp is always chasing the current “ideal”
clock C

(i)
p . It is convenient to assume that there is at least one resynchro-

nization every J seconds. (We can always add a null resynchronization in
which the new ideal clock C

(i+1)
p is the same as the old one C

(i)
p .) Thus,

if there is a nonzero correction during each resynchronization, then Tp is
always chasing the current ideal clock but never catches it.

Finally, let us make one minor change to this algorithm. Instead of
performing the ith resynchronization when Tp equals T (i), we perform it
when C

(i−1)
p equals T (i). This is a minor difference, since we expect Tp and

C
(i−1)
p to be close together when either of them reads T (i). However, as
Proposition 5 below indicates, the different ideal clocks C

(i)
p will be a little

more closely synchronized to one another than the service times Tp, so it is
slightly better to use them to control the resynchronization. We can now
restate our algorithm formally as follows, where J is a fixed parameter.

Resynchronization Algorithm: Let T (0), T (1), . . . be an unbounded
increasing sequence of times with T (j+1) − T (j) ≥ J for all j, let C(0)

p , C(1)
p ,

. . . be a sequence of p-clocks; for i > 0, let t
(i)
p be the Universal Time

such that C
(i−1)
p (t(i)p) = T (i); and let t

(0)
p be the Universal Time such that

13

C
(0)
p (t(0)p) = T (0). Then the service clock Tp is defined for t ≥ t

(0)
p by

Tp(t) = ap(t)Cp(t) + bp(t)

where ap and bp are defined as follows:

• For t
(0)
p ≤ t ≤ t

(1)
p : ap(t) = 1 and bp(t) = T (0) − Cp(t

(0)
p).

• For t
(i)
p < t ≤ t

(i+1)
p , i > 0: ap(t) = 1 + (C(i)

p (t
(i)
p) − Tp(t

(i)
p))/J and

bp(t) = bp(t
(i−1)
p) + (ap(t

(i−1)
p)− ap(t

(i)
p))Cp(t

(i)
p).

What conditions are required of the ideal clocks C
(i)
p to guarantee that

the Tp defined by the Resynchronization Algorithm satisfy the correct-rate,
synchronization, and correct-time conditions? Since each C

(i)
p is a p-clock,

running at the same rate as Cp, we know that the ideal clocks C
(i)
1 , . . . ,

C
(i)
n satisfy the correct-rate condition with bounds ρp. We expect that they
must also satisfy the synchronization and correct-time conditions. If the
ideal clocks C(i)

p satisfy these conditions, then the service clocks Tp will too,
provided that each Tp remains close to the current ideal clock C

(i)
p . (Of

course, the actual bounds in these conditions will not be the same for the
Tp as for the C

(i)
p .)

Since Tp is always “chasing” the current C
(i)
p , we need a bound on how

fast the ideal clocks can change as a result of resynchronization. The re-
quired condition is that there exist a constant σp such that, during any time
interval of length J , the total amount by which p’s ideal clocks are changed
is less than σp. (The constant J is the parameter of the Resynchronization
Algorithm.)

bounded correction with constants σp: For all p and all j, k: if j < k
and T (k) − T (j) < J , then

k−1∑
i=j

|C(i+1)
p − C

(i)
p | < σp

The following result shows that the bounded-correction condition ensures
that Tp stays close to C

(i)
p . The appearance of e (which equals 2.71828. . .)

is somewhat surprising.

14

Proposition 3 If the C
(i)
p satisfy the bounded-correction condition with con-

stants σp, then the Resynchronization Algorithm ensures that for every Uni-
versal Time t such that T (i) ≤ C

(i)
p (t) ≤ T (i+1):

|C(i)
p (t)− Tp(t)| < eσp/(e − 1)

where terms of order σ2
p/J are neglected.

Proof : Define the time-dependent value C by C(t) = C
(i)
p (t), for i deter-

mined by the condition T (i) ≤ C
(i)
t < T (i+1). In other words, C(t) is the

time read at Universal Time t by the ideal clock C
(i)
p being used at time

t. Observe that C(t) advances at the same rate as Cp(t) except that it is
incremented by C

(i)
p −C

(i−1)
p at the resynchronization (Universal) times t(i)p .

The bounded-correction condition means that the sum of the absolute value
of all such corrections performed during an interval of length J as measured
by C is less than σp. For convenience, I assume that this condition holds
when the length of the interval is measured by p’s local clock Cp rather than
by UT . This introduces an error in the length of the interval of at most σp,
which will introduce an error of order at most σ2

p/J in our bounds.
Let α(t) equal |C(t) − Tp(t)|. We must show that α(t) < eσp/(e − 1).

A rigorous, straightforward proof is obtained by computing α(t + ∆t) as a
function of α(t) and the resynchronizations performed during the interval
(t, t + ∆t). Such a proof is tedious and unenlightening. Instead, a less
rigorous but more intuitive proof is given.

Since Cp satisfies the correct-rate condition with bound less than one,
we can approximate it arbitrarily closely on the interval [t, t + ∆t] by a
differentiable function C ′

p with a strictly positive derivative. We can then
replace all functions of Universal Time by their composition with C ′−1

p . This
substitution leads to the same formulas we would have if Cp were a perfect
clock, with Cp(t) = t for all t. (In other words, the substitution effects a
change of coordinates from Universal Time to local-clock time.) Therefore,
we may assume without loss of generality that Cp is the identity function,
so Cp is the Universal Time clock UT .

Let t = t0 < t1 < · · · < tn = t+ J , and assume that the only resynchro-
nizations with nonzero corrections to C in the interval [t, t+J] occur at the
times ti. Let ci be the change to C at time ti, and let ∆ti = ti− ti−1. Then∑n
i=1∆ti = J and, by the bounded-correction hypothesis,

∑n
i=1 |ci| ≤ σp.

In addition to the resynchronizations at time ti, we can have an arbitrary
number of resynchronizations with zero correction. Such a resynchroniza-

15

tion has the effect of slowing the rate at which Tp converges towards C. The
maximum value for α is achieved by doing as many such resynchronizations
as possible. The value of α obtained by any finite number of resynchro-
nizations is less than the value obtained in the limiting case of continual
resynchronization, in which dα/dt = −α/J on each interval (ti−1, ti). A bit
of calculus then shows that

α(ti) < (α(ti−1) + ci−1)e−∆ti/J

from which we deduce

α(t+ J) < σp + (α(t)/e)

It is easy to show from this that if α(t) < eσp/(e − 1) then α(t + J) <
eσp/(e − 1). To complete the proof of the proposition, we need only show
that α(t) < eσp/(e− 1) holds for all t in the initial interval [T (0), T (0) + J].
However, this follows from the bounded-correction hypothesis and the fact
that Tp initially equals C

(0)
p , so α(T (0)) = 0.

I leave it as an exercise for the reader to show that the bound of Propo-
sition 3 is the best possible one. (Consider a scenario in which there is a
resynchronization every J seconds that advances the ideal clock by almost
σp and a large number of “zero resynchronizations”.) Proposition 3 imme-
diately implies the following two results.

Proposition 4 If the C
(i)
p satisfy the bounded-correction condition with con-

stants σp, then the Tp chosen by the algorithm above satisfy the correct-rate
condition with bounds ρp+eσp/(e−1)J (neglecting terms of order σ2

p/J
2). If,

for each fixed i, the C
(i)
p also satisfy the correct-time condition with bounds

εp on the interval [T (i), T (i+1)], then the Tp satisfy the correct-time condition
with bounds εp + eσp/(e− 1) (neglecting terms of order σ2

p/J).

Proposition 5 If, for each fixed i, the C
(i)
p satisfy the synchronization con-

dition with bounds δpq on the interval [T (i), T (i+1)], then the Tp chosen
by the algorithm above satisfy the synchronization condition with bounds
δpq + (2eσp/(e− 1)) (neglecting terms of order σ2

p/J).

These results are based upon the assumption that Tp initially equals C
(0)
p .

Suppose this is not the case, so Tp initially differs from the ideal clock C
(0)
p

by some quantity ∆T0. The argument used in the proof of Proposition 3
shows that at time T (0) + J , Tp will differ from its ideal clock by a quantity

16

∆T1 that is less than σp +∆T0/e, at time T (0) + 2J , Tp will differ from its
ideal clock by ∆T2 < σp + ∆T1/e, and so on. Thus, Tp will keep getting
closer to the ideal clock until it is within eσp/(e− 1).

Similarly, the synchronization condition assumes that initially |Tq−Tp| <
δpq. If this condition is not met, then the bound on |Tq−Tp| will keep getting
smaller until it eventually reaches a value less than δpq + (2eσp/(e − 1)).

4.2 Synchronization and Time-Correctness of Ideal Clocks

Propositions 4 and 5 show that the Tp satisfy the synchronization and
correct-time conditions if the ideal clocks C

(i)
p satisfy these conditions dur-

ing the interval [T (i), T (i+1)] and the sequence of ideal clocks C
(0)
p , C

(1)
p ,

. . . satisfies the bounded-correction condition. Moreover, suppose that the
C

(i)
p satisfy the synchronization and correct-time conditions with bounds δpq
and εp just at service time T (i)—that is, on the interval [T (i), T (i)]. In other
words, suppose only that the ideal clocks are synchronized to within δpq and
lie within εp of Universal Time when they read T (i). It is easy to see that
the C

(i)
p must then satisfy the synchronization and correct-time conditions

on the entire interval [T (i), T (i+1)] with bounds δpq+(ρp+ ρq)(T (i+1) −T (i))
and εp + ρp(T (i+1) − T (i)), respectively.

The requirement that the C
(i)
p satisfy the correct-time condition places

a bound on how much C
(i)
p and C

(i+1)
p may differ. In particular, if C

(i)
p

satisfies the correct-time condition on the entire interval [T (i), T (i+1)] with
bound εp + ρp(T (i+1) − T (i)), and C

(i+1)
p satisfies the correct-time condition

at time T (i+1) with bound εp, then |C(i+1)
p −C

(i)
p | < 2εp + ρp(T (i+1) − T (i)).

These inequalities together with the propositions above easily imply the
following result, where the hypothesis asserts that there is at least one and
at most r resynchronizations performed every J seconds.

Proposition 6 If, for each i, the clocks C
(i)
p satisfy the synchronization

condition with bounds δpq and the correct-time condition with bounds εp at
time T (i), and there is at least one and at most r of the T (i) in any interval
of the form [t, t+ J), then the Resynchronization Algorithm guarantees that
the clocks Tp satisfy:

• the correct-rate condition with bounds(
1 +

e

e− 1
)
ρp +

2re
(e− 1)J εp

(neglecting terms of order (rεp/J)2 and ρ2
p)

17

• the synchronization condition with bounds

δpq +
((
1 +

2e
e− 1

)
ρp + ρq

)
J +

4re
e− 1εp

(neglecting terms of order (rεp)2/J and ρ2J).

• the correct-time condition with bounds(
1 +

2re
e− 1

)
εp +

(
1 +

e

e− 1
)
ρpJ

(neglecting terms of order (rεp)2/J and ρ2J).

In order to compute Ip and Iq, processes p and q can use the values
for Universal Time provided by different subsets of the Universal Time
providers. Process p does not care which values are used by process q.
However, the following result indicates that to achieve the synchronization
condition with δpq < εp + εq, it is necessary for p and q to agree to compute
the values C

(i)
p and C

(i)
q using values of UT obtained from the same set of

providers j. To apply this proposition in our case, let F and G be the func-
tions used to compute Tp and Tq from the values UT (j)(t) broadcast by the
Universal Time providers. As I observed earlier, we expect these functions
to be translation invariant. (Recall that ‖U‖ is the width of the interval U .)
Proposition 7 Let F and G be translation-invariant functions on n-tuples
of intervals such that for any intervals U1, . . . , Un: if, for each j, ‖Uj‖ <
ε and the intersection of all the Uj is nonempty, then |G(U1, . . . , Un) −
F (U1, . . . , Un)| < δ. If δ < ε, then there is some j such that the values of
both F (U1, . . . , Un) and G(U1, . . . , Un) depend upon the value of Uj.

Proof : We assume that there is no such j and show that ε ≤ δ. This
assumption implies that we can renumber the arguments so that, for
some k, the value of F depends only upon its first k arguments and the
value of G depends only upon its last n − k arguments. Let F ′(U, V) =
F (U, . . . , U, V, . . . , V) and G′(U, V) = G(U, . . . , U, V, . . . , V), with k copies
of U and n − k copies of V . The value of F ′ depends only on its first
argument and the value of G′ depends only on its second argument. Let
U be an interval of width ε′, where ε′ < ε. Without loss of generality,
we can assume that F ′(U,U) ≥ G′(U,U). The hypothesis implies that
|G′(U + ε′, U) − F ′(U + ε′, U)| < δ. Since the value of G′ does not depend
upon its first argument, G′(U + ε′, U) = G′(U,U); similarly, F ′(U + ε′, U) =

18

F ′(U + ε′, U + ε′). Hence, |G′(U,U)− F ′(U + ε′, U + ε′)| < δ. However, the
translation invariance of F ′ implies that F ′(U + ε′, U + ε′) = F ′(U,U) + ε′.
Since F ′(U,U) ≥ G′(U,U), this allows us to conclude that ε′ ≤ δ. This is
true for any ε′ < ε, which implies the desired result ε ≤ δ.

Thus, p and q must agree upon a set of Universal Time providers whose
values they will use in computing C

(i)
p and C

(i)
q . This set may change for

different values of i (different resynchronizations). The method described
in [3] can be employed to obtain agreement on the current set of Universal
Time providers that are to be used. Here, let us assume that the values
UT (1), . . . , UT (m) from m providers are used.

To perform the ith resynchronization, each process p obtains a set of
intervals U (1)

p , . . . , U (m)
p , where U (j)

p is the value obtained from Universal
Time provider j. (It is the current value of UT (j) “smeared out” by un-
certainties in message-transmission time.) Process p sets its p-clock C

(i)
p to

equal F (U (1)
p , . . . ,U (m)

p) (when C
(i−1)
p = T (i)), where F is some real-valued

function of m intervals.
What properties must F have? As we indicated above, we expect F to be

translation invariant. We also require that F satisfy the Lipschitz condition
for some pseudo-metric. Recall that the Lipschitz condition means that
changing each argument by less than δ changes the value of F by less than
δ. Translation invariance implies that moving each interval a distance of
δ “in the same direction” changes the value of F by δ, so the Lipschitz
condition is the strongest “continuity bound” that can be achieved.

The Lipschitz condition implies that we can satisfy the synchronization
condition for the C

(i)
p by ensuring that d(U (j)

q ,U (j)
p) < δpq for all j. Intu-

itively, the Lipschitz condition ensures that p and q will be closely synchro-
nized if, for each Universal Time provider j, the values they obtain from j
are almost the same.

Marzullo’s function Mf
m was defined so that Mf

m(U1, . . . , Um) is the
largest interval whose endpoints lie within at least m − f of the intervals
U1, . . . , Um. One might be tempted to define the function F by letting
F (U1, . . . , Um) be the midpoint ofMf

m(U1, . . . , Um). However, this function
does not satisfy a Lipschitz condition; in fact, it is not even continuous.
Its discontinuity is illustrated in Figure 1, where m = 4, f = 1, Ip =
M1

4(U
(1)
p , . . . ,U (4)

p), and Iq = M1
4(U

(1)
q , . . . ,U (4)

q). In this example, the
values of U (j)

p and U (j)
q are ones that could be obtained if Universal Time

provider 1 is faulty. Processes p and q see the same values of U (2), U (3), and

19

U (4)
p

U (3)
p

U (2)
p

U (1)
p

Ip

(a) Process p’s computation.

U (4)
q

U (3)
q

U (2)
q

U (1)
q

Iq

(b) Process q’s computation.

Figure 1: Example of discontinuity of Marzullo’s function.

U (4), and they see values of U (1) that are almost the same. However, when
they apply Marzullo’s function to these sets of intervals, they compute very
different intervals Ip and Iq. Recall that Marzullo’s function computes the
optimal value of Ip—that is, the smallest interval that p knows to contain
UT . It is this discontinuity in the optimal Ip that makes it impossible,
in the presence of malicious faults, to satisfy the synchronization condition
with the extra requirement that Tp lies within Ip. More precisely, it can be
shown that if a nonfaulty process may assume that it is nonfaulty, then the
synchronization condition is incompatible with the requirement that each Tp
lies within Ip when the δpq are smaller than half the widths of the intervals
UT (j).

There are a number of functions F that are translation invariant and
satisfy the Lipschitz condition for a suitable choice of pseudo-metric. Two
such functions are obtained by letting F (U1, . . . , Um) equal the average or
the median of the midpoints of the Ui. (These functions satisfy the Lips-
chitz condition for the midpoint pseudo-metric and therefore for the uniform
metric.) A class of functions that includes both of these is defined as fol-
lows. Let Af (U1, . . . , Um) be the average of the multiset of m− 2f numbers
obtained by taking the midpoints of all the Ui and omitting the f lowest
and f highest of them. Each Af (with m > 2l) is translation invariant and
satisfies the Lipschitz condition for the midpoint pseudo-metric. (This fol-
lows from the result that, if the numbers xi and yi, with 1 ≤ i ≤ m, satisfy

20

|xi − yi| < δ, then for any s, the sth largest of the xi and the sth largest of
the yi differ by at most δ.)

The functionsAf actually give us a somewhat stronger bound on δpq than
that obtained simply from the Lipschitz condition. If dm(U

(j)
p ,U (j)

q) < δ(j),
then using Af to compute C

(i)
p and C

(i)
q gives an algorithm that satisfies

the synchronization condition with bounds δpq equal to the average of the
m − 2f largest of the δ(j). If the worst-case difference δ(j) between the
values that p and q obtain from Universal Time provider j depends upon
j, then the Lipschitz condition guarantees only that δpq is no larger than
the maximum of the δ(j), while the averaging function Af can do better.
However, the different values of δ(j) will probably be almost the same in a
practical application, so this is not significant.

Next, we consider the correct-time condition: |UT −C
(i)
p | < εp. Suppose

that at most f of the Universal Time providers may be faulty. If m ≤ 2f , so
at least half the Universal Time providers are faulty, there is not much hope
of finding any algorithm that satisfies the correct-time condition, since all
the faulty providers could give the same incorrect value.4 Therefore, we can
assume m > 2f . It is then easy to show that there exist nonfaulty providers
j and j′ such that Af (U (1)

p , . . . ,U (m)
p) lies between the midpoints of U (j)

p

and U (j′)
p . Combining this with the result above for the synchronization

condition, it is easy to prove the following result.

Proposition 8 With the notation of the Resynchronization Algorithm, let
U (j)
p be intervals such that, for all j:

1. For all p and q: dm(U
(j)
p ,U (j)

q) < δpq.

2. For all p: if Universal Time provider j is nonfaulty, then t
(i)
p ∈ U (j)

p .

where each C
(i)
p is chosen so that C

(i)
p (t

(i)
p) = Af (U (1)

p , . . . ,U (m)
p). If

there are at most f faulty Universal Time Providers, then the C
(i)
p sat-

isfy the synchronization condition with bounds δpq (neglecting terms of order
(ρp + ρq)δpq) and the correct-time condition with bounds max{‖U (j)

p ‖/2 :
provider j nonfaulty} at time T (i).

Observe that Af (U1, . . . , Um) depends only upon the midpoints of the
Ui, so Af (U1, . . . , Um) = Af (U1±ξ1, . . . , Um±ξm) for any numbers ξj. While

4However, even with more than half the providers faulty, it is still possible to satisfy
the synchronization condition.

21

the averaging function Af gives reasonable worst-case behavior, it does not
make the best use of the available information because it ignores the widths
of intervals. Very wide intervals are given the same weight as narrow ones,
even though they provide less information. One can construct examples in
which the function Af does not provide the best possible approximation
to UT . However, I know of no simple function F satisfying the Lipschitz
condition that does better.

4.3 Broadcasting Universal Time

By Proposition 8, the synchronization and correct-time conditions for non-
faulty processes can by met by broadcasting values from the Universal Time
providers such that the following two conditions are satisfied, where dm is
the midpoint pseudo-metric on intervals and U (j)

p is the value obtained by
p from server j during resynchronization i.

1. If processes p and q are nonfaulty, then for every Universal Time
provider j: dm(U

(j)
q ,U (j)

p) < δpq.

2. If process p and Universal Time provider j are both nonfaulty, then
UT (t(i)p) lies in the interval U

(j)
p .

These conditions are very similar to those of the approximate Byzantine
agreement problem [1], in which each process p begins with a real value vp
and must choose a real value v′p such that: (i) for nonfaulty processes p
and q: |v′q − v′p| < δ, and (ii) v′p lies within the interval I determined by
the largest and smallest of the values vq. For δ 	 ‖I‖, the approximate
Byzantine agreement problem is known to require f + 1 rounds of message
passing to handle f failures, even for simple halting failures in a completely
connected network.

We can apply lower-bound results for the approximate Byzantine agree-
ment problem to the problem of broadcasting a Universal Time provider’s
value by letting vp be the midpoint of the value U (j) that process p obtains
directly from provider j. The broadcast problem then becomes a special case
of the approximate Byzantine agreement problem. Since a faulty provider
may send very different values to different processes, the result for the ap-
proximate Byzantine agreement problem implies that f+1 rounds of message
passing are needed to handle f process failures in a completely connected
network.

22

We assume that if process p sends a message at time t to process q over a
path π, and p, q, and π are nonfaulty, then the message is received at some
time in the interval t+[τπmin, τ

π
max]. However, what if one or more of the pro-

cesses and/or channels on the path π are faulty? If we rule out “malicious”
process behavior and garbled messages, the only type of failure possible is
for a message sent over a channel c to take longer than τ cmax seconds to
be delivered. (A lost message is considered to take very much longer than
τ cmax seconds.) Even with malicious failures, one can guarantee that, with
suitably high probability, a faulty process or channel can do no more than
delay a message. Such a guarantee is achieved by using digital signatures,
so a faulty process cannot falsify the information contained in a message,
and by choosing the value of τ cmin so that it is physically impossible for a
message to be sent over channel c in less than τ cmin seconds—for example, by
letting τ cmin = 0. In practice, how one achieves this guarantee depends upon
the class of failure one is willing to tolerate. In most cases, it suffices to
add simple redundancy to messages. However, tolerating malicious failures
requires that a process relay a clock value by appending a digital signature
to it without removing other process’s signatures [2, 4].

The following algorithm by which a Universal Time provider j broadcasts
a set of clocks to all processes rests upon the assumption that faults can only
delay (or lose) messages. However, if j is faulty, it may send different values
to different processes. The choice of the constant k is discussed later.

Byzantine Clock-Broadcast Algorithm: A Universal Time provider j
broadcasts a p-clock to every process p as follows. (The sets Cp of p-clocks
are initially empty.)

1. j sends an interval U (j) to all its neighbors.

2. If process p receives the interval R along path π at time t, then it adds
to Cp the p-clock Iπp whose value at time t equals R

π, and it relays R to
each of its neighbors q unless one or more of the following conditions
holds:

• q is on the path π.

• Cp already contained p-clocks U and V such that the left endpoint
of U is greater than or equal to the left endpoint of Rπ

p and the
right endpoint of V is greater than or equal to the right endpoint
of Iπp .

• The length of π equals k.

23

3. When no more messages can arrive, process p sets UT (j)
p to be the

p-clock whose left and right endpoints are the maxima of the left and
right endpoints of all the p-clocks Iπp .

Note that in the second condition of step 2, U and V could be the same
p-clock. This condition can be strengthened so that p need not relay R to
q if it knows that q has already added to Cq a q-clock approximately equal
to Iπp . For example, suppose p received R by an Ethernet message and q
is on the same Ethernet. If one is willing to assume benign failure modes
for the Ethernet, then p could assume that q received the same message at
approximately the same time, so there is no need for p to relay it. However,
the resulting algorithm would then tolerate only benign Ethernet faults.

Define the delay τ and the variance γ of a Byzantine Clock-Broadcast
Algorithm to be the maximum of τπmax and γπ for all paths π from j of
length at most k. Suppose the clocks of any two nonfaulty processes differ
by at most ζ. Since messages along faulty paths can be ignored, it is easy
to see that if a Byzantine clock broadcast is initiated by provider j when its
clock equals T , then a process can ignore any message that reaches it over
a path π of length l when its clock reads later than τπmax + lζ. Hence, each
process p can compute its p-clock UT (j)

p at time τ +kζ, where τ is the delay
of the algorithm.

Suppose that, in executing the Byzantine Clock-Broadcast Algorithm, p
receives R along path π. Let r be a node on this path such that φ is the
subpath of π going from j to r, and η is the subpath going from r to p, so p
received R because r relayed R along η. Suppose that r also relays R to q
along ψ. If p, q, r, ψ, and η are nonfaulty, then Proposition 2 implies that
if p received R at time t, then

du(Iπp (t), I
φψ
q (t)) < γη + γψ

(neglecting terms such as ρpτ
π
max). The following result follows easily from

this.

Proposition 9 Assume that for every pair of nonfaulty processes p, q there
are paths φη from Universal Time provider j to p and φψ from j to q of
length at most k such that η and ψ are nonfaulty. If a Byzantine Clock-
Broadcast algorithm with variance γ is started at time t to broadcast an
interval U (j), then:

1. If p and q are nonfaulty, then du(UT (j)
p (t),UT (j)

q (t)) < 2γ

24

2. If j and p are nonfaulty and UT (t) ∈ U (j) then UT (t) ∈ UT (j)
p (t).

(neglecting terms of order ρpτ
π
max for paths π of length at most k from j to

p).

For any particular network, the hypothesis of Proposition 9 can be satisfied
by making k large enough if every pair of nonfaulty processes are connected
by some nonfaulty path. The choice of k and the actual set of channels to
use for the broadcast will be a compromise between the conflicting desires
to increase reliability and reduce the number of messages sent.

The conclusion of Proposition 9 is almost but not quite in the form neces-
sary for implying the hypothesis of Proposition 8. This is because the value
U (j)
p used in the actual algorithm will be UT (j)

p (t
(i)
p) rather than UT (j)

p (t).
However, the conclusion of Proposition 9 remains valid after replacing t by
the values t

(i)
p if we can neglect terms of order ρp|t(i)p − t|. These terms will

be negligibly small if the time t, when the clock broadcast is begun, is close
to the resynchronization time t

(i)
p . The broadcast needs to be begun early

enough so that every process p receives its value before time t
(i)
p , which is

the time when its clock C
(i)
p reads T (i). If the C(i−1)

p satisfy the correct-time
condition with bounds εp and τ is the maximum of τπmax for all paths from j

of length k, then we get a minimum value for |t(i)p − t| on the order of εp+ τ .

4.4 The Complete Algorithm

We now have all the pieces necessary to construct an algorithm to compute
the Tp. First, one must select disjoint sets Pi of processes such that if p and
q want to synchronize their times so that δpq < εp + εq, then they both lie
within the same set Pi. If the sets Pi can change, then the algorithm of
[3] is used to guarantee that all nonfaulty processes agree upon the current
collection of sets.

A process p not in any set Pi simply chooses Tp to be the midpoint of
Ip. All processes p in the same set Pi choose their service times Tp by the
following algorithm.

Service Time Algorithm:

1. The processes in Pi choose a set of Universal Time providers. The
method of [3] is used to ensure that all processes in Pi agree upon

25

a set of providers that are thought to be nonfaulty and to provide
suitable values.5 Let this set of providers be numbered from 1 to m.

2. For a sequence of predetermined times T (i) and time providers ji, when
the maximum (right-hand endpoint) of UT (ji) equals T (i) − τ − k(χ+
ρH), provider ji executes the Byzantine Clock-Broadcast Algorithm,
with U (ji) equal to the current value of UT (ji), to broadcast a p-clock
UT (ji)

p to every process p in Pi, where
• τ is the delay of the broadcast algorithm.

• χ ≥ ‖UT (ji)
p ‖/2 for all p.

• H is a constant such that each provider j broadcasts its value of
UT (j) in this way at least once every H seconds.

• k is the parameter of the broadcast algorithm.

3. Each process p sets C
(i)
p equal to the p-clock Af (UT (1)

p , . . . ,UT (m)
p).

4. Process p uses the Resynchronization Algorithm to compute Tp.

It follows from the correct-time condition in Proposition 10 below that
provider ji initiates its broadcast early enough so each process p can compute
C

(i)
p by the time C

(i−1)
p reaches T (i).

Propositions 6, 8, and 9 allow us to deduce that the Tp satisfy the correct-
rate, synchronization, and correct-time conditions. However, the bounds in
these conditions become rather complex. Therefore, only the simpler condi-
tions for the ideal clocks C(i)

p are given; the corresponding conditions for the
service clocks Tp are obtained from these bounds by applying Proposition 6.

Proposition 10 If at most f of the Universal Time providers are faulty,
then the clocks C

(i)
p constructed in step 3 of the Service Time Algorithm

satisfy

• the clock-synchronization condition with bounds 2γ + (ρp + ρq)H.

• the correct-time condition with bounds χ+ ρpH.

on the interval [T (i), T (i+1)] (neglecting terms of order ρpτ).
5Since agreement takes time, a provider will have to remain in the set of chosen

providers for some period of time after it is discovered to be faulty before the processes
agree to eliminate it. Thus, even if we assumed that faulty Universal Time providers can
be detected, the algorithm for choosing Tp still has to tolerate faulty providers.

26

Glossary

Cp: Process p’s local clock.

C
(i)
p : A mythical ideal clock that runs at the same rate as Cp and maintains

the “correct” time, as learned by p in the ith resynchronization.

dm: The midpoint pseudo-metric on (bounded) intervals; dm(U, V) is de-
fined to be the distance between the midpoints of U and V .

du: The uniform metric on intervals; du([x, y], [v,w]) is defined to be the
maximum of |v − x| and |w − y|.

e: 2.7182818284590452353602874713526624977572470936999595749669. . .

H: A parameter of the Service Time Algorithm, chosen to be a length of
time such that each Universal Time provider broadcasts its value at
least once every H seconds.

i: Used as a superscript to denote a clock-synchronization event.

Ip: A clock range, maintained by time server p, that is guaranteed to contain
UT .

j: Used as a sub- or superscript to denote a Universal Time provider.

J: A parameter of the Resynchronization Algorithm, chosen to be a length
of time such that there is at least one resynchronization every J sec-
onds. (At the ith resynchronization, process p sets the running rate of
Tp so that Tp would equal C

(i)
p after exactly J seconds, in the absence

of further resynchronization.)

k: The maximum-length path by which messages travel in a Byzantine
Clock-Broadcast Algorithm.

Lipschitz condition: F satisfies a Lipschitz condition for pseudo-metric d
if d(Ui, Vi) < δ for all i implies |F (U1, . . . , UM)− F (V1, . . . , VM)| < δ.

pseudo-metric: A nonnegative function d such that: (i) d(U, V) = d(V,U),
(ii) d(U, V) + d(V,W) ≥ d(U,W), and (iii) d(U,U + ε) = |ε|.

Rπ: The interval R+ [τπmin, τ
π
max], where R is an interval and π is a path.

Tp: The time provided by time-service process p.

27

T (i): The time of the ith resynchronization (as read by the clocks C
(i−1)
p).

translation invariance: F is translation invariant if F (U1 + x, . . . , Um +
x) = F (U1, . . . , Um) + x.

UT : Universal Time—the ideal standard, closely approximated by clocks
at the National Bureau of Standards and other places throughout the
world.

U (j): An interval containing UT broadcast by Universal Time provider j
during a particular synchronization.

U (j)
p : The interval obtained by process p when U (j) is broadcast by Univer-

sal Time provider j.

UT (j): A clock range maintained by Universal Time provider j that contains
UT .

UT (j)
p : The p-clock obtained by process p when Universal Time provider j
broadcasts UT (j).

t
(i)
p : The value of UT at which process p’s ideal clock C

(i−1)
p reads T (i).

γ: The variance of a Byzantine Clock-Broadcast Algorithm.

γc: When c is a channel, it equals τ cmax − τ cmin, the uncertainty in message-
transmission time over channel c. For a path π, γπ is the sum of the
γc for all channels c in the path.

δpq: An upper bound on the difference between time values provided by
nodes p and q—e.g., an upper bound for |Tp − Tq|.

ε: An upper bound on half the width of UT (j) for all nonfaulty Universal
Time providers j.

εp: An upper bound on the difference between Universal Time and a value
provided by process p—e.g., an upper bound on |UT − Tp|.

κp: An upper bound on the error in the rate of change of the service time
Tp provided by process p.

ρp: An upper bound on the error in the running rate of Cp.

28

σp: The maximum amount by which resynchronization can change p’s ideal
clocks C

(i)
p during any time interval of J seconds duration.

τ : The delay of a Byzantine Clock-Broadcast Algorithm.

τ cmin: The minimum message delay for a message sent across channel c. (It
includes the time needed to generate the message.) For a path π, τπmin

is the sum of the minimum message delays for all channels in path π.

τ cmax: The maximum message delay for a message sent across channel c
(including the time needed to generate the message). For a path π,
τπmax is the sum of the maximum message delays for all channels in
path π.

χ: A parameter of the Service Time Algorithm, at least half the maximum
width of UT (j)

p for every nonfaulty Universal Time provider j and
nonfaulty process p.

‖ . . . ‖ : The width of an interval, defined by ‖[x, y]‖ = y − x.

+: The sum of two intervals is defined by [u, v] + [x, y] = [u+x, v+ y]. The
sum of an interval and a number is defined by [u, v]+x = [u+x, v+x].

±: For an interval [u, v] and a number δ ≥ 0, [u, v] ± δ is the interval
[u− δ, v + δ].

Acknowledgments

Michael Fine originally suggested to me the problem of a network time ser-
vice. Discussions with Andrei Broder helped me formulate the solution.
Andrei Broder and Tim Mann discovered many small errors in earlier ver-
sions of this document.

29

30

References

[1] Danny Dolev, Nancy A. Lynch, Sholmit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of
faults. Journal of the ACM, 33(3):499–516, July 1985.

[2] Joseph Y. Halpern, Barbara Simons, and Ray Strong. Byzantine
clock synchronization. In Jayadev Misra, editor, Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing,
pages 89–102, Association for Computing Machinery, Inc., New York,
August 1984.

[3] Leslie Lamport. Using time instead of timeout for fault-tolerant dis-
tributed systems. ACM Transactions on Programming Languages and
Systems, 6(2):254–280, April 1984.

[4] Leslie Lamport and P. M. Melliar-Smith. Byzantine clock synchroniza-
tion. In Jayadev Misra, editor, Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, pages 68–74, Asso-
ciation for Computing Machinery, Inc., New York, August 1984.

[5] Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm
for clock synchronization. In Jayadev Misra, editor, Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing,
pages 75–88, Association for Computing Machinery, Inc., New York,
August 1984.

[6] Keith A. Marzullo. Maintaining Time in a Distributed System. PhD
thesis, Stanford University, March 1984.

31

32

Index

approximate Byzantine agreement
problem, defined, 22

bounded-correction condition with
constants σp, 16

formally stated, 15
broadcasting (see Universal Time

provider), 22
Byzantine clock synchronization al-

gorithms, 4
Byzantine Clock-Broadcast Algo-

rithm
formally stated, 23–24

Byzantine failure, 4

channel
broadcast channel, defined, 7
defined, 7
point-to-point channel, defined,

7
clock

defined, 6
local clock (Cp), of process p
properties of, 6

mythical ideal clock (C(i)
p)

defined, 13
p-clock range, defined, 7
p-clock, defined, 6–7
range, defined, 7

correct-rate condition, 4, 14
requirement for time Tp, intro-

duced informally, 2
with bounds κp, 17
defined, 6

correct-time condition, 4, 14
requirement for time Tp, intro-

duced informally, 2

with bounds εp, 18, 21
defined, 6

distance function, (see metric), 5

interval
defined, 4
width of (notation for), 4

Lipschitz condition, 19–22
defined, 5

Marzullo’s algorithm, property of,
10–11

Marzullo’s function
discontinuity in, 19, 20

Marzullo, Keith, 1, 3
metric, defined, 5
midpoint pseudo-metric (see pseudo-

metric), 5

null path, defined, 8

p-clock (see clock), 7
path, defined, 8
process, defined, 4
pseudo-metric (d)

defined, 5
midpoint pseudo-metric, defined,

5
uniform metric, defined, 5

Resynchronization Algorithm, 15,
17, 21, 26

formally stated, 13–14

service time (Tp)
requirements for, 2

33

Service Time Algorithm
formally stated, 25–26

synchronization condition, 4, 14
requirement for time Tp, intro-

duced informally, 2
with bounds δpq, 16, 18, 21
defined, 6

time service
functions required of, 1

time-dependent value, defined, 5
translation invariance, 19, 20

defined, 5

uniform metric (see pseudo met-
ric), 5

Universal Time (UT)
defined, 1
obtaining, 9–11

Universal Time provider
broadcasting its value, 22
introduced, 8

34

