
CS677: Distributed OSComputer Science Lecture 12, page 1

Last Class

• Vector timestamps

• Global state

– Distributed Snapshot

• Election algorithms

CS677: Distributed OSComputer Science Lecture 12, page 2

Today: Still More Canonical Problems

• Election algorithms

– Bully algorithm

– Ring algorithm

• Distributed synchronization and mutual exclusion

• Distributed transactions

CS677: Distributed OSComputer Science Lecture 12, page 3

Election Algorithms

• Many distributed algorithms need one process to act as

coordinator

– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique

coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a

master in Berkeley clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

CS677: Distributed OSComputer Science Lecture 12, page 4

Bully Algorithm

• Each process has a unique numerical ID

• Processes know the Ids and address of every other process

• Communication is assumed reliable

• Key Idea: select process with highest ID

• Process initiates election if it just recovered from failure
or if coordinator failed

• 3 message types: election, OK, I won

• Several processes can initiate an election simultaneously
– Need consistent result

• O(n2) messages required with n processes

CS677: Distributed OSComputer Science Lecture 12, page 5

Bully Algorithm Details

• Any process P can initiate an election

• P sends Election messages to all process with higher Ids and awaits
OK messages

• If no OK messages, P becomes coordinator and sends I won
messages to all process with lower Ids

• If it receives an OK, it drops out and waits for an I won

• If a process receives an Election msg, it returns an OK and starts an
election

• If a process receives a I won, it treats sender an coordinator

CS677: Distributed OSComputer Science Lecture 12, page 6

Bully Algorithm Example

• The bully election algorithm

• Process 4 holds an election

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election

CS677: Distributed OSComputer Science Lecture 12, page 7

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

CS677: Distributed OSComputer Science Lecture 12, page 8

Ring-based Election

• Processes have unique Ids and arranged in a logical ring

• Each process knows its neighbors

– Select process with highest ID

• Begin election if just recovered or coordinator has failed

• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found

• Each process tags its ID on the message

• Initiator picks node with highest ID and sends a coordinator

message

• Multiple elections can be in progress

– Wastes network bandwidth but does no harm

CS677: Distributed OSComputer Science Lecture 12, page 9

A Ring Algorithm

• Election algorithm using a ring.

CS677: Distributed OSComputer Science Lecture 12, page 10

Comparison

• Assume n processes and one election in progress

• Bully algorithm

– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs

– Best case: immediate election: n-2 messages

• Ring

– 2 (n-1) messages always

CS677: Distributed OSComputer Science Lecture 12, page 11

Distributed Synchronization

• Distributed system with multiple processes may need to

share data or access shared data structures

– Use critical sections with mutual exclusion

• Single process with multiple threads

– Semaphores, locks, monitors

• How do you do this for multiple processes in a

distributed system?

– Processes may be running on different machines

• Solution: lock mechanism for a distributed environment

– Can be centralized or distributed

CS677: Distributed OSComputer Science Lecture 12, page 12

Centralized Mutual Exclusion

• Assume processes are numbered

• One process is elected coordinator (highest ID process)

• Every process needs to check with coordinator before
entering the critical section

• To obtain exclusive access: send request, await reply

• To release: send release message

• Coordinator:
– Receive request: if available and queue empty, send grant; if

not, queue request

– Receive release: remove next request from queue and send
grant

CS677: Distributed OSComputer Science Lecture 12, page 13

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

CS677: Distributed OSComputer Science Lecture 12, page 14

Properties

• Simulates centralized lock using blocking calls

• Fair: requests are granted the lock in the order they were received

• Simple: three messages per use of a critical section (request, grant,

release)

• Shortcomings:

– Single point of failure

– How do you detect a dead coordinator?

• A process can not distinguish between “lock in use” from a dead

coordinator

– No response from coordinator in either case

– Performance bottleneck in large distributed systems

CS677: Distributed OSComputer Science Lecture 12, page 15

Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages

• Based on event ordering and time stamps

• Process k enters critical section as follows

– Generate new time stamp TSk = TSk+1

– Send request(k,TSk) all other n-1 processes

– Wait until reply(j) received from all other processes

– Enter critical section

• Upon receiving a request message, process j

– Sends reply if no contention

– If already in critical section, does not reply, queue request

– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else

queue

CS677: Distributed OSComputer Science Lecture 12, page 16

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.

CS677: Distributed OSComputer Science Lecture 12, page 17

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions

– Any overloaded process can become a bottleneck

CS677: Distributed OSComputer Science Lecture 12, page 18

A Token Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section

• Must wait for token before entering CS

• Pass the token to neighbor once done or if not interested

• Detecting token loss in non-trivial

CS677: Distributed OSComputer Science Lecture 12, page 19

Comparison

• A comparison of three mutual exclusion algorithms.

Lost token, process

crash
0 to n – 11 to !Token ring

Crash of any

process
2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry (in

message times)

Messages per

entry/exit
Algorithm

CS677: Distributed OSComputer Science Lecture 12, page 20

Transactions

•Transactions provide higher level

mechanism for atomicity of

processing in distributed systems

– Have their origins in databases

•Banking example: Three

accounts A:$100, B:$200, C:$300

– Client 1: transfer $4 from A to B

– Client 2: transfer $3 from C to B

•Result can be inconsistent unless

certain properties are imposed on

the accesses

Write B:$203

Read B: $200

Write B:$204

Read B: $200

Write C:$297

Read C: $300

Write A: $96

Read A: $100

Client 2Client 1

CS677: Distributed OSComputer Science Lecture 12, page 21

ACID Properties

•Atomic: all or nothing

•Consistent: transaction takes

system from one consistent state to

another

•Isolated: Immediate effects are

not visible to other (serializable)

•Durable: Changes are permanent

once transaction completes

(commits) Read B: $204

Write C:$297

Write B:$207

Read C: $300

Write B:$204

Read B: $200

Write A: $96

Read A: $100

Client 2Client 1

