Last Class: Introduction

- Distributed Systems
 - A collection of independent computers that appears to its users as a single coherent system
- Hardware concepts
 - Multiprocessors, multi-computers
- Beyond uniprocessor operating systems
 - Distributed OS
 - Network OS
 - Middleware OS
 - Complementary properties

CS677: Distributed OS

Lecture 2, page 1

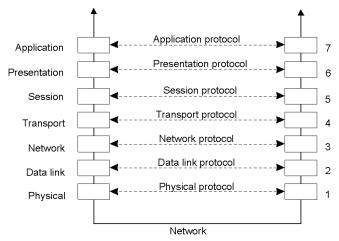
Communication in Distributed Systems

- Issues in communication (today)
- Message-oriented Communication
- Remote Procedure Calls
 - Transparency but poor for passing references
- Remote Method Invocation
 - RMIs are essentially RPCs but specific to remote objects
 - System wide references passed as parameters
- Stream-oriented Communication

CS677: Distributed OS

Communication Between Processes

- *Unstructured* communication
 - Use shared memory or shared data structures
- Structured communication
 - Use explicit messages (IPCs)
- Distributed Systems: both need low-level communication support (why?)

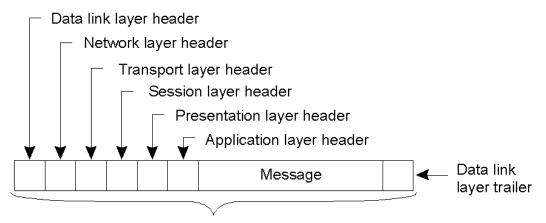


CS677: Distributed OS

Lecture 2, page 3

Communication Protocols

- Protocols are agreements/rules on communication
- Protocols could be connection-oriented or connectionless

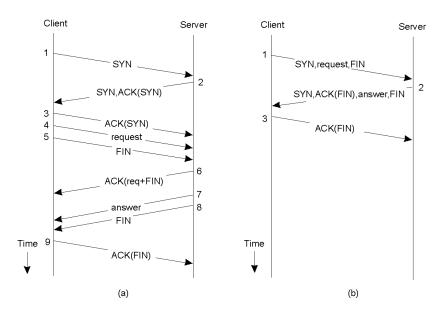


Computer Science

CS677: Distributed OS

Layered Protocols

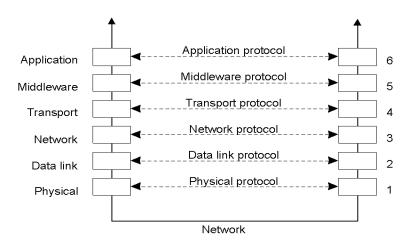
• A typical message as it appears on the network.


Bits that actually appear on the network

CS677: Distributed OS

Lecture 2, page 5

Client-Server TCP

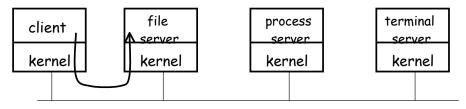


Computer Science

CS677: Distributed OS

Middleware Protocols

- Middleware: layer that resides between an OS and an application
 - May implement general-purpose protocols that warrant their own layers
 - Example: distributed commit



CS677: Distributed OS

Lecture 2, page 7

Client-Server Communication Model

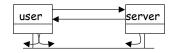
- Structure: group of servers offering service to clients
- Based on a request/response paradigm
- Techniques:
 - Socket, remote procedure calls (RPC), Remote Method Invocation (RMI)

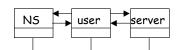
Computer Science

CS677: Distributed OS

Issues in Client-Server Communication

- Addressing
- Blocking versus non-blocking
- Buffered versus unbuffered
- Reliable versus unreliable
- Server architecture: concurrent versus sequential
- Scalability


CS677: Distributed OS


Lecture 2, page 9

Addressing Issues

- *Question:* how is the server located?
- Hard-wired address
 - Machine address and process address are known a priori
- Broadcast-based
 - Server chooses address from a sparse address space
 - Client broadcasts request
 - Can cache response for future
- Locate address via name server

CS677: Distributed OS

Blocking versus Non-blocking

- Blocking communication (synchronous)
 - Send blocks until message is actually sent
 - Receive blocks until message is actually received
- Non-blocking communication (asynchronous)
 - Send returns immediately
 - Return does not block either
- Examples:

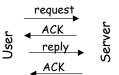
CS677: Distributed OS

Lecture 2, page 11

Buffering Issues

- Unbuffered communication
 - Server must call receive before client can call send

- Buffered communication
 - Client send to a mailbox
 - Server receives from a mailbox



CS677: Distributed OS

Reliability

- Unreliable channel
 - Need acknowledgements (ACKs)
 - Applications handle ACKs
 - ACKs for both request and reply
- Reliable channel
 - Reply acts as ACK for request
 - Explicit ACK for response
- Reliable communication on unreliable channels
 - Transport protocol handles lost messages

CS677: Distributed OS

Lecture 2, page 13

Server Architecture

- Sequential
 - Serve one request at a time
 - Can service multiple requests by employing events and asynchronous communication
- Concurrent
 - Server spawns a process or thread to service each request
 - Can also use a pre-spawned pool of threads/processes (apache)
- Thus servers could be
 - Pure-sequential, event-based, thread-based, process-based
- Discussion: which architecture is most efficient?

CS677: Distributed OS

Scalability

- Question: How can you scale the server capacity?
- Buy bigger machine!
- Replicate
- Distribute data and/or algorithms
- Ship code instead of data
- Cache

CS677: Distributed OS

Lecture 2, page 15

To Push or Pull?

- Client-pull architecture
 - Clients pull data from servers (by sending requests)
 - Example: HTTP
 - Pro: stateless servers, failures are each to handle
 - Con: limited scalability
- Server-push architecture
 - Servers push data to client
 - Example: video streaming, stock tickers
 - Pro: more scalable, Con: stateful servers, less resilient to failure
- When/how-often to push or pull?

CS677: Distributed OS

Group Communication

- One-to-many communication: useful for distributed applications
- Issues:
 - Group characteristics:
 - Static/dynamic, open/closed
 - Group addressing
 - Multicast, broadcast, application-level multicast (unicast)
 - Atomicity
 - Message ordering
 - Scalability

CS677: Distributed OS

Lecture 2, page 17

Putting it all together: Email

- User uses mail client to compose a message
- Mail client connects to mail server
- Mail server looks up address to destination mail server
- Mail server sets up a connection and passes the mail to destination mail server
- Destination stores mail in input buffer (user mailbox)
- Recipient checks mail at a later time

CS677: Distributed OS

Email: Design Considerations

- Structured or unstructured?
- Addressing?
- Blocking/non-blocking?
- Buffered or unbuffered?
- Reliable or unreliable?
- Server architecture
- Scalability
- Push or pull?
- Group communication

CS677: Distributed OS