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Last Class: RPCs

• RPCs make distributed computations look like local 
computations

• Issues:
– Parameter passing
– Binding
– Failure handling
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Today: 

• Case Study: Sun RPC

• Lightweight RPCs

• Remote Method Invocation (RMI)
– Design issues
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Case Study: SUNRPC

• One of the most widely used RPC systems
• Developed for use with NFS
• Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure
• At-least-once semantics if reply received, at-least-zero semantics 

if no reply. With UDP tries at-most-once
• Use SUN’s eXternal Data Representation (XDR) 

– Big endian order for 32 bit integers, handle arbitrarily large data structures
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Binder: Port Mapper

•Server start-up: create  port
•Server stub calls svc_register to 
register prog. #, version # with 
local port mapper
•Port mapper stores prog #, 
version #, and port
•Client start-up: call clnt_create
to locate server port
•Upon return, client can call 
procedures at the server
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Rpcgen: generating stubs

• Q_xdr.c: do XDR conversion
• Detailed example: later in this course
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Lightweight RPCs

• Many RPCs occur between client and server on same 
machine
– Need to optimize RPCs for this special case => use a 

lightweight RPC mechanism (LRPC)

• Server S exports interface to remote procedures
• Client C on same machine imports interface
• OS kernel creates data structures including an argument 

stack shared between S and C
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Lightweight RPCs

• RPC execution
– Push arguments onto stack
– Trap to kernel
– Kernel changes mem map of client to server address space
– Client thread executes procedure (OS upcall)
– Thread traps to kernel upon completion
– Kernel changes the address space back and returns control to 

client

• Called “doors” in Solaris
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Doors

• Which RPC to use?  - run-time bit allows stub to choose between 
LRPC and RPC
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Other RPC Models

• Asynchronous RPC
– Request-reply behavior often not needed
– Server can reply as soon as request is received and execute procedure later

• Deferred-synchronous RPC
– Use two asynchronous RPCs
– Client needs a reply but can’t wait for it; server sends reply via another 

asynchronous RPC

• One-way RPC
– Client does not even wait for an ACK from the server
– Limitation: reliability not guaranteed (Client does not know if procedure 

was executed by the server).
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Asynchronous RPC 

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

2-12
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Deferred Synchronous RPC

• A client and server interacting through two asynchronous RPCs

2-13
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Remote Method Invocation (RMI)

• RPCs applied to objects, i.e., instances of a class
– Class: object-oriented abstraction; module with data and 

operations
– Separation between interface and implementation
– Interface resides on one machine, implementation on another

• RMIs support system-wide object references
– Parameters can be object references
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Distributed Objects

• When a client binds to a distributed object, load the interface 
(“proxy”) into client address space
– Proxy analogous to stubs

• Server stub is referred to as a skeleton
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Proxies and Skeletons

• Proxy: client stub
– Maintains server ID, endpoint, object ID
– Sets up and tears down connection with the server
– [Java:] does  serialization of local object parameters
– In practice, can be downloaded/constructed on the fly (why 

can’t this be done for RPCs in general?)

• Skeleton: server stub
– Does deserialization and passes parameters to server and sends 

result to proxy
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Binding a Client to an Object

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)
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Parameter Passing

• Less restrictive than RPCs.
– Supports system-wide object references
– [Java] pass  local objects by value, pass remote objects by reference
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DCE Distributed-Object Model

a) Distributed dynamic objects in DCE.
b) Distributed named objects
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Java RMI

• Server
– Defines interface and implements interface methods
– Server program

• Creates server object and registers object with “remote 
object” registry

• Client
– Looks up server in remote object registru
– Uses normal method call syntax for remote methos

• Java tools
– Rmiregistry: server-side name server
– Rmic: uses server interface to create client and server stubs
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Java RMI and Synchronization
• Java supports Monitors: synchronized objects

– Serializes accesses to objects
– How does this work for remote objects?

• Options: block at the client or the server
• Block at server

– Can synchronize across multiple proxies
– Problem: what if the client crashes while blocked?

• Block at proxy  
– Need to synchronize clients at different machines
– Explicit distributed locking necessary 

• Java uses proxies for blocking
– No protection for simultaneous access from different clients
– Applications need to implement distributed locking 


