
1

CS677: Distributed OSComputer Science Lecture 4, page 1

Last Class: RPCs

• RPCs make distributed computations look like local
computations

• Issues:
– Parameter passing
– Binding
– Failure handling

CS677: Distributed OSComputer Science Lecture 4, page 2

Today:

• Case Study: Sun RPC

• Lightweight RPCs

• Remote Method Invocation (RMI)
– Design issues

2

CS677: Distributed OSComputer Science Lecture 4, page 3

Case Study: SUNRPC

• One of the most widely used RPC systems
• Developed for use with NFS
• Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure
• At-least-once semantics if reply received, at-least-zero semantics

if no reply. With UDP tries at-most-once
• Use SUN’s eXternal Data Representation (XDR)

– Big endian order for 32 bit integers, handle arbitrarily large data structures

CS677: Distributed OSComputer Science Lecture 4, page 4

Binder: Port Mapper

•Server start-up: create port
•Server stub calls svc_register to
register prog. #, version # with
local port mapper
•Port mapper stores prog #,
version #, and port
•Client start-up: call clnt_create
to locate server port
•Upon return, client can call
procedures at the server

3

CS677: Distributed OSComputer Science Lecture 4, page 5

Rpcgen: generating stubs

• Q_xdr.c: do XDR conversion
• Detailed example: later in this course

CS677: Distributed OSComputer Science Lecture 4, page 6

Lightweight RPCs

• Many RPCs occur between client and server on same
machine
– Need to optimize RPCs for this special case => use a

lightweight RPC mechanism (LRPC)

• Server S exports interface to remote procedures
• Client C on same machine imports interface
• OS kernel creates data structures including an argument

stack shared between S and C

4

CS677: Distributed OSComputer Science Lecture 4, page 7

Lightweight RPCs

• RPC execution
– Push arguments onto stack
– Trap to kernel
– Kernel changes mem map of client to server address space
– Client thread executes procedure (OS upcall)
– Thread traps to kernel upon completion
– Kernel changes the address space back and returns control to

client

• Called “doors” in Solaris

CS677: Distributed OSComputer Science Lecture 4, page 8

Doors

• Which RPC to use? - run-time bit allows stub to choose between
LRPC and RPC

5

CS677: Distributed OSComputer Science Lecture 4, page 9

Other RPC Models

• Asynchronous RPC
– Request-reply behavior often not needed
– Server can reply as soon as request is received and execute procedure later

• Deferred-synchronous RPC
– Use two asynchronous RPCs
– Client needs a reply but can’t wait for it; server sends reply via another

asynchronous RPC

• One-way RPC
– Client does not even wait for an ACK from the server
– Limitation: reliability not guaranteed (Client does not know if procedure

was executed by the server).

CS677: Distributed OSComputer Science Lecture 4, page 10

Asynchronous RPC

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

2-12

6

CS677: Distributed OSComputer Science Lecture 4, page 11

Deferred Synchronous RPC

• A client and server interacting through two asynchronous RPCs

2-13

CS677: Distributed OSComputer Science Lecture 4, page 12

Remote Method Invocation (RMI)

• RPCs applied to objects, i.e., instances of a class
– Class: object-oriented abstraction; module with data and

operations
– Separation between interface and implementation
– Interface resides on one machine, implementation on another

• RMIs support system-wide object references
– Parameters can be object references

7

CS677: Distributed OSComputer Science Lecture 4, page 13

Distributed Objects

• When a client binds to a distributed object, load the interface
(“proxy”) into client address space
– Proxy analogous to stubs

• Server stub is referred to as a skeleton

CS677: Distributed OSComputer Science Lecture 4, page 14

Proxies and Skeletons

• Proxy: client stub
– Maintains server ID, endpoint, object ID
– Sets up and tears down connection with the server
– [Java:] does serialization of local object parameters
– In practice, can be downloaded/constructed on the fly (why

can’t this be done for RPCs in general?)

• Skeleton: server stub
– Does deserialization and passes parameters to server and sends

result to proxy

8

CS677: Distributed OSComputer Science Lecture 4, page 15

Binding a Client to an Object

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

CS677: Distributed OSComputer Science Lecture 4, page 16

Parameter Passing

• Less restrictive than RPCs.
– Supports system-wide object references
– [Java] pass local objects by value, pass remote objects by reference

9

CS677: Distributed OSComputer Science Lecture 4, page 17

DCE Distributed-Object Model

a) Distributed dynamic objects in DCE.
b) Distributed named objects

CS677: Distributed OSComputer Science Lecture 4, page 18

Java RMI

• Server
– Defines interface and implements interface methods
– Server program

• Creates server object and registers object with “remote
object” registry

• Client
– Looks up server in remote object registru
– Uses normal method call syntax for remote methos

• Java tools
– Rmiregistry: server-side name server
– Rmic: uses server interface to create client and server stubs

10

CS677: Distributed OSComputer Science Lecture 4, page 19

Java RMI and Synchronization
• Java supports Monitors: synchronized objects

– Serializes accesses to objects
– How does this work for remote objects?

• Options: block at the client or the server
• Block at server

– Can synchronize across multiple proxies
– Problem: what if the client crashes while blocked?

• Block at proxy
– Need to synchronize clients at different machines
– Explicit distributed locking necessary

• Java uses proxies for blocking
– No protection for simultaneous access from different clients
– Applications need to implement distributed locking

