Multimedia Servers

- Multimedia: digital audio, video, images,...

- Streaming audio and video
 - Very different characteristics from textual and numeric files
 - Need different techniques for managing multimedia data

- Video: sequence of images played out at a constant rate

- Digital video is often stored in compressed format

Need For Video Compression

- Large data rate and storage capacity requirement

<table>
<thead>
<tr>
<th>Satellite imagery</th>
<th>180x180 km², 30 m² resolution</th>
<th>600 MB/image</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC video</td>
<td>30 frames/s, 640x480 pixels, 3 bytes/pixel</td>
<td>30 MBytes/s</td>
</tr>
</tbody>
</table>

- Compression algorithms exploit:
 - Spatial redundancy (i.e., correlation between neighboring pixels)
 - Spectral redundancy (i.e., correlation between different frequency spectrum)
 - Temporal redundancy (i.e., correlation between successive frames)
Requirements for Compression Algorithms

• Objectives:
 – Minimize the complexity of the encoding and decoding process
 – Ensure a good quality of decoded images
 – Achieve high compression ratios

• Other general requirements:
 – Independence of specific size and frame rate
 – Support various data rates

Classification of Compression Algorithms

• Lossless compression:
 – Reconstructed image is mathematically equivalent to the original image (i.e., reconstruction is perfect)
 – Drawback: achieves only a modest level of compression (about a factor of 5)

• Lossy compression:
 – Reconstructed image demonstrates degradation in the quality of the image ⇒ the techniques are irreversible
 – Advantage: achieves very high degree of compression (compression ratios up to 200)
 – Objective: maximize the degree of compression while maintaining the quality of the image to be “virtually lossless”
MPEG - An Overview

- Two categories: **intra-frame** and **inter-frame** encoding

- **Contrasting requirements**: delicate balance between intra- and inter-frame encoding
 - Need for high compression ⇒ only intra-frame encoding is not sufficient
 - Need for random access ⇒ best satisfied by intra-frame encoding

- **Overview of the MPEG algorithm**:
 - DCT-based compression for the reduction of spatial redundancy (similar to JPEG)
 - Block-based motion compensation for exploiting the temporal redundancy
 * Motion compensation using both *causal* (predictive coding) and *non-causal* (interpolative coding) predictors

Exploiting Temporal Redundancy

- Three types of frames in MPEG:
 - **I-frames**:
 * Intra-coded frames, provide access points for random access - yield moderate compression
 - **P-frames**:
 * Predicted frames are encoded with reference to a previous I or P frame
 - **B-frames**:
 * Bidirectional frames encoded using the previous and the next I/P frame
 * Achieves maximum compression
Multimedia Storage Servers

- Digitally stores heterogeneous data objects (consisting of audio, video, imagery, textual, and numeric data) on extremely high capacity storage devices

- Fundamental differences in data type characteristics and requirements
 - Best-effort service for text vs. real-time for video
 - Small read/writes for text vs. large read/writes for video
 -

Approach

- Techniques for efficiently managing video data
 - Placement techniques
 - Fault tolerance issues
 - Scheduling, retrieval, and admission control
 - I/O stream sharing (buffering, batching, caching, ...)

- Methodology:
 - What are the fundamental issues?
 - How to address these issues? (Theory)
 - How to instantiate the solutions? (Practice)
Terminology

- **Disk fundamentals:**
 - Seek time
 - Rotational latency
 - Transfer rate
 - Scheduling algorithms: FCFS, SCAN, SSTF, SATF

Terminology (Cont’d)

- **Disk arrays**

- **Striping**
 - **Interleave**: The storage of each media stream among disks
 - **Stripe unit**: Maximum amount of logically contiguous data that is stored on a single disk
 - **Degree of striping**: Number of disks across which a media stream is striped

- **Redundant and non-redundant disk arrays**
Video Storage Server: Fundamentals

- Data transfer rate of disks \gg data rate requirement of isolated video streams \Rightarrow designing single-user video servers is straightforward

- Server stores digitized video streams on an array of disks

- Clients can request the retrieval of video streams for real-time playback

- Two possible server architectures:
 - Client-pull
 - Server-push

Client-pull Architecture

- Server retrieves data only in response to an explicit request from client

- Used in conventional file system to provide *best-effort* service

- Adapting client-pull architecture for video: clients ensure playback continuity by
 - Determining the playback instant of a frame
 - Estimating response time for each request
 - Issuing a read request accordingly

- Response time: a function of the system load \Rightarrow varies widely over time \Rightarrow estimation is non-trivial
Server-push Architecture

- Periodicity of video playback ⇒ service clients in periodic *rounds*
- Round: retrieve a fixed number of frames for each media stream
- Continuous retrieval ⇒ total service time must not exceed the playback duration of frames retrieved during a round

Efficient Placement on Disk Arrays

- Stripe video streams on disk arrays in terms of blocks (or stripe units)
- Two parameters: stripe unit size and degree of striping
- Stripe unit size (block size): use large (128-512 KB) block size
 - Large block size reduces disk seek and rotational latency overheads
Retrieval Techniques

- Streaming media data imposes real-time constraints on retrieval
 - Need to retrieve 30 frame in each second
 - Client or server buffering can provide some leeway but still need guarantees

- Performance guarantees on retrieval → need to limit the number of clients accessing a server

- Employ admission control algorithms

Admission Control

- Server push retrieval: retrieve f frames in each periodic round R

- Continuous playback requirements: retrieval time of f_1, f_2, \ldots, f_k frames for all k clients should not exceed R

- Admission control test
 - Estimate resource needs of new client (time to retrieve f_i frames)
 - Verify if total resource needs \leq capacity (total retrieval time $\leq R$)
 - If so, admit, else deny