Security in Distributed Systems

- Introduction
- Cryptography
- Authentication
- Key exchange
- Readings: Tannenbaum, chapter 8
 Ross/Kurose, Ch 7 (available online)

Network Security

Intruder may
- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages
Issues

Important issues:

- cryptography: secrecy of info being transmitted
- authentication: proving who you are and having correspondent prove his/her/its identity

Security in Computer Networks

User resources:

- login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)
Security Issues

Network resources:
- often completely unprotected from intruder eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:
- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many system-provided security measures
- users must take a more active role

Encryption

plaintext: unencrypted message
ciphertext: encrypted form of message

Intruder may
- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms
A simple encryption algorithm

Substitution cipher:

abcdefgijklmnopqrstuvwxyz

poiuytrewqasdfghjklmnbcxz

• replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my love

ciphertext: iepksgmmmy, dz sgby

Encryption Algo (contd)

• key is pairing between plaintext characters and ciphertext characters

• symmetric key: sender and receiver use same key

• 26! (approx 10^{26}) different possible keys: unlikely to be broken by random trials

• substitution cipher subject to decryption using observed frequency of letters
 • 'e' most common letter, 'the' most common word
DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
 - everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56! substitution ciphers used
 - substitution: 19 stages of transformations, 16 involving functions of key

Symmetric Cryptosystems: DES (1)

(a) The principle of DES
(b) Outline of one encryption round
Symmetric Cryptosystems: DES (2)

- Details of per-round key generation in DES.

Key Distribution Problem

Problem: how do communicant agree on symmetric key?
- N communicants implies N keys

Trusted agent distribution:
- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key
Key Distribution

We will cover in more detail shortly

Public Key Cryptography

- separate encryption/decryption keys
 - receiver makes known (!) its encryption key
 - receiver keeps its decryption key secret
- to send to receiver B, encrypt message M using B's publicly available key, EB
 - send EB(M)
- to decrypt, B applies its private decrypt key DB to receiver message:
 - computing DB(EB(M)) gives M
Public Key Cryptography

- knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- only receiver can decrypt message

Question: good encryption/decryption algorithms

RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:
- choose two prime numbers, p, q greater than 10^{100}
- compute $n=pq$ and $z=(p-1)(q-1)$
- choose number d which has no common factors with z
- compute e such that $ed = 1$ mod z, i.e.,
 \[
 \text{integer-remainder}(\frac{ed}{(p-1)(q-1)}) = 1, \text{ i.e., }
 ed = k(p-1)(q-1) + 1
 \]
- three numbers:
 - e, n made public
 - d kept secret
RSA (continued)

to encrypt:
• divide message into blocks, \(\{b_i\} \) of size \(j \) such that \(2^j < n \)
• encrypt: \(encrypt(b_i) = b_i^e \mod n \)

to decrypt:
• \(b_i = encrypt(b_i)^d \)

to break RSA:
• need to know \(p, q \), given \(pq = n \), \(n \) known
• factoring 200 digit \(n \) into primes takes 4 billion years using known methods

RSA example

• choose \(p=3, q=11 \), gives \(n=33 \), \((p-1)(q-1)=z=20 \)
• choose \(d = 7 \) since 7 and 20 have no common factors
• compute \(e = 3 \), so that \(ed = k(p-1)(q-1)+1 \)
 (note: \(k=1 \) here)
Example

<table>
<thead>
<tr>
<th>plaintext</th>
<th>e=3</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>#</td>
<td>^3</td>
</tr>
<tr>
<td>S</td>
<td>19</td>
<td>6859</td>
</tr>
<tr>
<td>U</td>
<td>21</td>
<td>9261</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>2744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ciphertext</th>
<th>d=7</th>
<th>plaintext</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>c^7</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>13492928512</td>
<td>19 S</td>
</tr>
<tr>
<td>21</td>
<td>1801</td>
<td>21 N</td>
</tr>
</tbody>
</table>

Further notes on RSA

why does RSA work?

• crucial number theory result: if \(p, q \) prime then
 \[b_i^{((p-1)(q-1))} \equiv 1 \pmod{pq} \]

• using mod \(pq \) arithmetic:
 \[(b^e)^d = b^{ed}\]
 \[= b^{(k(p-1)(q-1)+1)} \text{ for some } k \]
 \[= b \cdot b^{(p-1)(q-1)} \cdot b^{(p-1)(q-1)} \cdots b^{(p-1)(q-1)} \]
 \[= b \cdot 1 \cdot 1 \cdots 1 \]
 \[= b \]

 Note: we can also encrypt with \(d \) and encrypt with \(e \).

• this will be useful shortly
How to break RSA?

Brute force: get B's public key
- for each possible b_i in plaintext, compute b_i^e
- for each observed b_i^e, we then know b_i
- moral: choose size of b_i "big enough"

Breaking RSA

man-in-the-middle: intercept keys, spoof identity: